732 research outputs found
RPCs Considered Harmful
Scholars agree that amphibious configurations are an interesting new topic in the field of cryp- toanalysis, and mathematicians concur. After years of structured research into gigabit switches, we argue the improvement of forward-error correction, which embodies the private principles of cryptography. In our research, we use authenticated modalities to demonstrate that digital-to-analog converters and evolutionary programming can collude to address this question. Such a hypothesis at first glance seems unexpected but is derived from known results
Pressure Dependent Low Temperature Kinetics for CN + CH3CN: Competition between Chemical Reaction and van der Waals Complex Formation
International audienceThe gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNâŻCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNâŻCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed
Silver Microparticle-Enhanced Laser-Induced Breakdown Spectroscopy
Enhanced emission was observed in the laser-induced breakdown spectroscopy (LIBS) atomic emission spectra of bacterial cells deposited upon a nitrocellulose filtration medium in the presence of one-micron silver microparticles. A deposition chamber was constructed that allowed a uniform coating of the filter with trace amounts of silver microparticles. Masses from 10 to 100 ÎŒg were deposited in a circular area of 52.18 mm2. A 30 s deposition time was used for all experiments resulting in a mass deposition of 39 ÎŒg ± 17 ÎŒg. This mass coverage on the filter provided for a single laser shot silver mass ablation of 3.3 ng per laser shot. LIBS spectra were acquired with single-shot 1064 nm laser pulses from specimens of E. coli, M. smegmatis, and E. cloacae deposited on both microparticle-coated filters and blank filters. An increase in emission intensity for all elements detected in the bacterial LIBS spectrum as well as the carbon emission which derives in part from the nitrocellulose filter medium was observed due to the ablation with silver microparticles relative to the intensity measured from the ablation of bacterial cells deposited on a blank filter. The ratio of emission intensity with microparticles to emission intensity without microparticles was measured to be 3.6 for phosphorus, 4.5 for magnesium, 5.3 for calcium, 4.0 for sodium, and 1.2 for carbon. An enhancement in LIBS emission intensity in the range of 1â10 was observed for all the spectra, with an average enhancement ratio of 4.3
Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages
DNA base-pairing is the central interaction in DNA assembly. However, this simple four-letter (AâT and GâC) language makes it difficult to create complex structures without using a large number of DNA strands of different sequences. Inspired by protein folding, we introduce hydrophobic interactions to expand the assembly language of DNA nanotechnology. To achieve this, DNA cages of different geometries are combined with sequence-defined polymers containing long alkyl and oligoethylene glycol repeat units. Anisotropic decoration of hydrophobic polymers on one face of the cage leads to hydrophobically driven formation of quantized aggregates of DNA cages, where polymer length determines the cage aggregation number. Hydrophobic chains decorated on both faces of the cage can undergo an intrascaffold âhandshakeâ to generate DNA-micelle cages, which have increased structural stability and assembly cooperativity, and can encapsulate small molecules. The polymer sequence order can control the interaction between hydrophobic blocks, leading to unprecedented âdoughnut-shapedâ DNA cage-ring structures. We thus demonstrate that new structural and functional modes in DNA nanostructures can emerge from the synergy of two interactions, providing an attractive approach to develop protein-inspired assembly modules in DNA nanotechnology
Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts
The goal of this paper is to review recent research on copy number variations (CNVs) and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE) consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history
Detection and Classification of Bacterial Cells After Centrifugation and Filtration of Liquid Specimens Using Laser-Induced Breakdown Spectroscopy
Five species of bacteria including Escherichia coli, Mycobacterium smegmatis, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Enterobacter cloacae were deposited from suspensions of various titers onto disposable nitrocellulose filter media for analysis by laser-induced breakdown spectroscopy (LIBS). Bacteria were concentrated and isolated in the center of the filter media during centrifugation using a simple and convenient sample preparation step. Summing all the single-shot LIBS spectra acquired from a given bacterial deposition provided perfectly sensitive and specific discrimination from sterile water control specimens in a partial least squares discriminant analysis (PLS-DA). Use of the single-shot spectra provided only a 0.87 and 0.72 sensitivity and specificity, respectively. To increase the statistical validity of chemometric analyses, a library of pseudodata was created by adding Gaussian noise to the measured intensity of every emission line in an averaged spectrum of each bacterium. The normally distributed pseudodata, consisting of 4995 spectra, were used to compare the performance of the PLS-DA with a discriminant function analysis (DFA) and an artificial neural network (ANN). For the highly similar bacterial data, no algorithm showed significantly superior performance, although the PLS-DA performed least accurately with a classification error of 0.21 compared to 0.16 and 0.17 for ANN and DFA, respectively. Single-shot LIBS spectra from all of the bacterial species were classified in a DFA model tested with a tenfold cross-validation. Classification errors ranging from 20% to 31% were measured due to repeatability limitations in the single-shot data
Pancreas serous cystadenoma: typical imaging aspect of a rare tumor
Abdominal ultrasonography performed in a 54-year-old woman suffering from dyspepsia revealed a large pancreatic mass (Fig. A). CT showed an 8 cm rounded shape pancreatic head mass, slightly lobulated, hypodense but of non pure hydric density at its edge (15- 20 UH) with a stellar-shaped calcified center (Fig. B). After iodine injection, multiple thin septa were visible forming multiple small lodges non-exceeding 2 cm diameter. Pancreatic head or body were not atrophic and main pancreatic duct size was < 3 mm
Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by âantioxidantâ metal chelators: From ferroptosis to stroke
AbstractNeurologic conditions including stroke, Alzheimer disease, Parkinson disease, and Huntington disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia-inducible factor (HIF)-1α mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway is neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adaptation in detail and provide perspective on which targets within this pathway seem to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases
- âŠ