140 research outputs found

    Novel EDGE encoding method enhances ability to identify genetic interactions

    Get PDF
    Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041;intergenic region of chromosome 7)-rs4695885 (MAF: 0.34;intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action. Author summary Although traditional genetic encodings are widely implemented in genetics research, including in genome-wide association studies (GWAS) and epistasis, each method makes assumptions that may not reflect the underlying etiology. Here, we introduce a novel encoding method that estimates and assigns an individualized data-driven encoding for each single nucleotide polymorphism (SNP): the elastic data-driven genetic encoding (EDGE). With simulations, we demonstrate that this novel method is more accurate and robust than traditional encoding methods in estimating heterozygous genotype values, reducing the type I error, and detecting SNP-SNP interactions. We further applied the traditional encodings and EDGE to biomedical data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes, and EDGE identified a novel interaction for age-related cataract not detected by traditional methods, which replicated in data from the UK Biobank. EDGE provides an alternative approach to understanding and modeling diverse SNP models and is recommended for studying complex genetics in common human phenotypes

    NAC blocks Cystatin C amyloid complex aggregation in a cell system and in skin of HCCAA patients.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadHereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To evaluate the ability of molecules to interfere with aggregation of hCC while informing about cellular toxicity, we generated cells that produce and secrete WT and L68Q-hCC and have detected high-molecular weight complexes formed from the mutant protein. Incubations of either lysate or supernatant containing L68Q-hCC with reducing agents glutathione or N-acetyl-cysteine (NAC) breaks oligomers into monomers. Six L68Q-hCC carriers taking NAC had skin biopsies obtained to determine if hCC deposits were reduced following NAC treatment. Remarkably, ~50-90% reduction of L68Q-hCC staining was observed in five of the treated carriers suggesting that L68Q-hCC is a clinical target for reducing agents.Artic Therapeutics LLC Autonomous Community of Madrid (CAM). Spai

    Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene

    Get PDF
    Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, Pmeta=2.15 Ă— 10-09), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 Ă— 10-06), and further show it is an eQTL for FNDC1 (P=9.3 Ă— 10-05). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM

    The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human height is considered highly heritable and correlated with certain disorders, such as type 2 diabetes and cancer. Despite environmental influences, genetic factors are known to play an important role in stature determination. A number of genetic determinants of adult height have already been established through genome wide association studies.</p> <p>Methods</p> <p>To examine 51 single nucleotide polymorphisms (SNPs) corresponding to the 46 previously reported genomic loci for height in 8,184 European American children with height measurements. We leveraged genotyping data from our ongoing GWA study of height variation in children in order to query the 51 SNPs in this pediatric cohort.</p> <p>Results</p> <p>Sixteen of these SNPs yielded at least nominally significant association to height, representing fifteen different loci including <it>EFEMP1-PNPT1, GPR126, C6orf173, SPAG17</it>, Histone class 1, HLA class III and <it>GDF5-UQCC</it>. Other loci revealed no evidence for association, including <it>HMGA1 and HMGA2</it>. For the 16 associated variants, the genotype score explained 1.64% of the total variation for height z-score.</p> <p>Conclusion</p> <p>Among 46 loci that have been reported to associate with adult height to date, at least 15 also contribute to the determination of height in childhood.</p

    Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma

    Get PDF
    RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10 CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations

    Whole-genome sequencing of pharmacogenetic drug response in racially diverse children with asthma

    Get PDF
    RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10-7) and suggestive (P \u3c 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and β-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Meta-analysis identifies seven susceptibility loci involved in the atopic March

    Get PDF
    Eczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 Ă— 10 a'8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 Ă— 10 a'9). Additional susceptibility loci identified
    • …
    corecore