626 research outputs found

    Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo

    Get PDF
    Efficient bi-directional axonal transport is critical for the function and survival of neurons. Defects in this process have been identified in early stages of several late-onset neurological disease models. Axonal transport is also thought to naturally decline with age, which could exacerbate pathological deficiencies and may alter disease onset and/or progression. Here, by using the atoxic binding fragment of tetanus neurotoxin (HcT), we monitored the transport kinetics of axonal signalling endosomes, which are intracellular compartments essential for neuronal differentiation and homeostasis. HcT can be injected into muscles, where it is taken up by nerve termini and hijacks the retrograde delivery of signalling endosomes. Assessing the dynamic properties of signalling endosomes in live, female, wild-type mice aged from one to over 13 months, we saw no significant alterations in transport speeds or pausing. Our work indicates that decline in signalling endosome kinetics does not occur before one year in vivo, suggesting that its deterioration during normal ageing is unlikely to be affecting previously reported disease-associated endosome transport deficits

    A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels

    Get PDF
    OBJECTIVE: Dorsal root ganglia (DRG) are heterogeneous assemblies of assorted sensory neuron cell bodies found in bilateral pairs at every level of the spinal column. Pseudounipolar afferent neurons convert external stimuli from the environment into electrical signals that are retrogradely transmitted to the spinal cord dorsal horn. To do this, they extend single axons from their DRG-resident somas that then bifurcate and project both centrally and distally. DRG can be dissected from mice at embryonic stages and any age post-natally, and have been extensively used to study sensory neuron development and function, response to injury, and pathological processes in acquired and genetic diseases. We have previously published a step-by-step dissection method for the rapid isolation of post-natal mouse DRG. Here, the objective is to extend the protocol by providing training videos that showcase the dissection in fine detail and permit the extraction of ganglia from defined spinal levels. RESULTS: By following this method, the reader will be able to swiftly and accurately isolate specific lumbar, thoracic, and cervical DRG from mice. Dissected ganglia can then be used for RNA/protein analyses, subjected to immunohistochemical examination, and cultured as explants or dissociated primary neurons, for in-depth investigations of sensory neuron biology

    Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle

    Get PDF
    Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease-causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be dissected, processed and imaged without major disruption to muscle fibres and nerve-muscle contacts, are more suitable for accurate and detailed analyses of the peripheral motor nervous system. One such wholemount muscle is the predominantly fast twitch epitrochleoanconeus (ETA), which is located in the upper forelimb, innervated by the radial nerve, and contains relatively large and uniformly flat neuromuscular junctions (NMJs). To facilitate incorporation of the ETA into the experimental toolkit of the neuromuscular disease field, here, we describe a simple method for its rapid isolation (<5 min), supported by high-resolution videos and step-by-step images. Furthermore, we outline how the ETA can be imaged in live, anaesthetised mice, to enable examination of dynamic cellular processes occurring at the NMJ and within intramuscular axons, including transport of organelles, such as mitochondria and signalling endosomes. Finally, we present reference data on wild-type ETA fibre-type composition in young adult, male C57BL6/J mice. Comparative neuroanatomical studies of different muscles in rodent models of disease can generate critical insights into pathogenesis and pathology; dissection of the wholemount ETA provides the possibility to diversify the repertoire of muscles analysed for this endeavour

    Bactericidal action of positive and negative ions in air

    Get PDF
    In recent years there has been renewed interest in the use of air ionisers to control of the spread of airborne infection. One characteristic of air ions which has been widely reported is their apparent biocidal action. However, whilst the body of evidence suggests a biocidal effect in the presence of air ions the physical and biological mechanisms involved remain unclear. In particular, it is not clear which of several possible mechanisms of electrical origin (i.e. the action of the ions, the production of ozone, or the action of the electric field) are responsible for cell death. A study was therefore undertaken to clarify this issue and to determine the physical mechanisms associated with microbial cell death. In the study seven bacterial species (Staphylococcus aureus, Mycobacterium parafortuitum, Pseudomonas aeruginosa, Acinetobacter baumanii, Burkholderia cenocepacia, Bacillus subtilis and Serratia marcescens) were exposed to both positive and negative ions in the presence of air. In order to distinguish between effects arising from: (i) the action of the air ions; (ii) the action of the electric field, and (iii) the action of ozone, two interventions were made. The first intervention involved placing a thin mica sheet between the ionisation source and the bacteria, directly over the agar plates. This intervention, while leaving the electric field unaltered, prevented the air ions from reaching the microbial samples. In addition, the mica plate prevented ozone produced from reaching the bacteria. The second intervention involved placing an earthed wire mesh directly above the agar plates. This prevented both the electric field and the air ions from impacting on the bacteria, while allowing any ozone present to reach the agar plate. With the exception of Mycobacterium parafortuitum, the principal cause of cell death amongst the bacteria studied was exposure to ozone, with electroporation playing a secondary role. However in the case of Mycobacterium parafortuitum, electroporation resulting from exposure to the electric field appears to have been the principal cause of cell inactivation. The results of the study suggest that the bactericidal action attributed to negative air ions by previous researchers may have been overestimated

    Methodological advances in imaging intravital axonal transport

    Get PDF
    Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer's disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions

    Expanding the Toolkit for In Vivo Imaging of Axonal Transport

    Get PDF
    Axonal transport maintains neuronal homeostasis by enabling the bidirectional trafficking of diverse organelles and cargoes. Disruptions in axonal transport have devastating consequences for individual neurons and their networks, and contribute to a plethora of neurological disorders. As many of these conditions involve both cell autonomous and non-autonomous mechanisms, and often display a spectrum of pathology across neuronal subtypes, methods to accurately identify and analyze neuronal subsets are imperative. This paper details protocols to assess in vivo axonal transport of signaling endosomes and mitochondria in sciatic nerves of anesthetized mice. Stepwise instructions are provided to 1) distinguish motor from sensory neurons in vivo, in situ, and ex vivo by using mice that selectively express fluorescent proteins within cholinergic motor neurons; and 2) separately or concurrently assess in vivo axonal transport of signaling endosomes and mitochondria. These complementary intravital approaches facilitate the simultaneous imaging of different cargoes in distinct peripheral nerve axons to quantitatively monitor axonal transport in health and disease

    Altered sensory neuron development in CMT2D mice is site-specific and linked to increased GlyRS levels

    Get PDF
    Dominant, missense mutations in the widely and constitutively expressed GARS1 gene cause a peripheral neuropathy that usually begins in adolescence and principally impacts the upper limbs. Caused by a toxic gain-of-function in the encoded glycyl-tRNA synthetase (GlyRS) enzyme, the neuropathology appears to be independent of the canonical role of GlyRS in aminoacylation. Patients display progressive, life-long weakness and wasting of muscles in hands followed by feet, with frequently associated deficits in sensation. When dysfunction is observed in motor and sensory nerves, there is a diagnosis of Charcot-Marie-Tooth disease type 2D (CMT2D), or distal hereditary motor neuropathy type V if the symptoms are purely motor. The cause of this varied sensory involvement remains unresolved, as are the pathomechanisms underlying the selective neurodegeneration characteristic of the disease. We have previously identified in CMT2D mice that neuropathy-causing Gars mutations perturb sensory neuron fate and permit mutant GlyRS to aberrantly interact with neurotrophin receptors (Trks). Here, we extend this work by interrogating further the anatomy and function of the CMT2D sensory nervous system in mutant Gars mice, obtaining several key results: 1) sensory pathology is restricted to neurons innervating the hindlimbs; 2) perturbation of sensory development is not common to all mouse models of neuromuscular disease; 3) in vitro axonal transport of signalling endosomes is not impaired in afferent neurons of all CMT2D mouse models; and 4) Gars expression is selectively elevated in a subset of sensory neurons and linked to sensory developmental defects. These findings highlight the importance of comparative neurological assessment in mouse models of disease and shed light on key proposed neuropathogenic mechanisms in GARS1-linked neuropathy

    Neuropilin 1 sequestration by neuropathogenic mutant glycyl-tRNA synthetase is permissive to vascular homeostasis

    Get PDF
    The mechanism by which dominantly inherited mutations in the housekeeping gene GARS, which encodes glycyl-tRNA synthetase (GlyRS), mediate selective peripheral nerve toxicity resulting in Charcot-Marie-Tooth disease type 2D (CMT2D) is still largely unresolved. The transmembrane receptor protein neuropilin 1 (Nrp1) was recently identifed as an aberrant extracellular binding partner of mutant GlyRS. Formation of the Nrp1/mutant GlyRS complex antagonises Nrp1 interaction with one of its main natural ligands, vascular endothelial growth factor-A (VEGF-A), contributing to neurodegeneration. However, reduced extracellular binding of VEGF-A to Nrp1 is known to disrupt post-natal blood vessel development and growth. We therefore analysed the vascular system at early and late symptomatic time points in CMT2D mouse muscles, retina, and sciatic nerve, as well as in embryonic hindbrain. Mutant tissues show no diference in blood vessel diameter, density/growth, and branching from embryonic development to three months, spanning the duration over which numerous sensory and neuromuscular phenotypes manifest. Our fndings indicate that mutant GlyRS-mediated disruption of Nrp1/VEGF-A signalling is permissive to maturation and maintenance of the vasculature in CMT2D mice

    Axonal transport and neurological disease

    Get PDF
    Axonal transport is the process whereby motor proteins actively navigate microtubules to deliver diverse cargoes, such as organelles, from one end of the axon to the other, and is widely regarded as essential for nerve development, function and survival. Mutations in genes encoding key components of the transport machinery, including motor proteins, motor adaptors and microtubules, have been discovered to cause neurological disease. Moreover, disruptions in axonal cargo trafficking have been extensively reported across a wide range of nervous system disorders. However, whether these impairments have a major causative role in, are contributing to or are simply a consequence of neuronal degeneration remains unclear. Therefore, the fundamental relevance of defective trafficking along axons to nerve dysfunction and pathology is often debated. In this article, we review the latest evidence emerging from human and in vivo studies on whether perturbations in axonal transport are indeed integral to the pathogenesis of neurological disease
    • …
    corecore