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Abstract
Axonal transport is the active process whereby neurons transport cargoes such
as organelles and proteins anterogradely from the cell body to the axon
terminal and retrogradely in the opposite direction. Bi-directional transport in
axons is absolutely essential for the functioning and survival of neurons and
appears to be negatively impacted by both aging and diseases of the nervous
system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The
movement of individual cargoes along axons has been studied   in livein vitro
neurons and tissue explants for a number of years; however, it is currently
unclear as to whether these systems faithfully and consistently replicate the in

situation. A number of intravital techniques originally developed forvivo 
studying diverse biological events have recently been adapted to monitor
axonal transport in real-time in a range of live organisms and are providing
novel insight into this dynamic process. Here, we highlight these
methodological advances in intravital imaging of axonal transport, outlining key
strengths and limitations while discussing findings, possible improvements, and
outstanding questions.
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In vivo techniques are poised to provide novel insight 
into live axonal transport
Neurons are highly polarised, excitable cells with long, thin axons 
whose integrity requires specialised mechanisms to transport  
cargoes such as organelles (e.g. mitochondria) and molecules 
(e.g. proteins and RNA) in anterograde (from soma to axonal 
tips) and retrograde (from axonal tips to soma) directions1. This 
bi-directional axonal transport is governed by the kinesin and 
cytoplasmic dynein motor proteins, respectively, and is essential 
for neuronal survival and function2. Given the large distances over 
which these processes must occur, it is perhaps unsurprising that 
disturbances in axonal transport have been linked to both age-
ing and many severe nervous system diseases, including Alzhe-
imer’s disease (AD) and amyotrophic lateral sclerosis (ALS)3–5.  
Emphasising the importance of efficient axonal transport to nervous 
system health, mutations in a number of motor proteins have been 
identified as causative in neuronal disorders1,6,7.

Individual cargoes have long been tracked in real-time in primary 
neuron and ex vivo tissue axons8–10; however, there is evidence to 
suggest that these artificial environments do not consistently reflect 
the in vivo situation11–14. Differences in transport dynamics, such as 
average speeds and pause frequencies11, could be attributed to limi-
tations inherent to these in vitro and ex vivo platforms. Cultured pri-
mary neurons lack the array of cells with which neurons normally 
physically and chemically interact in situ; for example, cultured 

motor neurons are not myelinated, do not contact target muscle  
cells, and lack a network of regulated excitatory and inhibitory input 
onto their cell bodies. Myelination15–17, target-derived signals18,19, 
and activity20–23 are all known to impact axonal transport, whereas 
non-cell autonomous and age-dependent disease mechanisms are 
difficult to accurately model in vitro. Mouse primary cultures are 
often derived from embryonic animals24,25 not currently analysed 
in vivo, which may also cause discrepancies, as could the current 
intrinsic variability of human induced pluripotent stem cell (hiPSC)-
derived neuronal cultures26. Furthermore, the artificially controlled 
in vitro environment could affect subcellular energy demands and 
transport kinetics27, as might stress caused by axotomy and the 
continual growth of primary cultures. Intravital analysis of axonal 
transport of individual cargoes (Figure 1) is therefore likely to  
provide more physiologically relevant insights into this dynamic 
process, albeit with its own pitfalls (Table 1)28–30.

In this short review, we will highlight recent methodological 
advances and adaptations enabling the in vivo imaging of axonal 
transport across model organisms, specifically focusing on tech-
niques that track the fast axonal transport of individual cargoes in 
real-time rather than transport en masse. We will outline strengths 
and weaknesses of the methods along with findings they have gen-
erated (Box 1), highlight major outstanding questions (Box 2), and 
discuss possible improvements and future directions for in vivo 
analysis.

Figure 1. Imaging intravital axonal transport dynamics. (A) The transport of individual fluorescent cargoes along axons can be assessed 
in vivo. This series of time-lapse confocal microscopy images (i-iv) depicts the retrograde movement (left to right) of the tetanus toxin binding 
domain (HcT-555) in sciatic nerve axons, as detailed in Gibbs et al.11. Distinct signalling endosomes (e.g. coloured triangles) loaded with  
HcT-555 can be tracked across multiple images and transport assessed. (B) Representative kymograph generated from fluorescently 
labelled signalling endosomes being transported in sciatic nerve axons. (C) Numerous features of axonal transport kinetics can be assessed 
and plotted (see Box 3 also); for example, speed distribution curves of individual endosome steps (i), average endosome speeds (ii), mean 
endosome speeds per animal (iii), the percentage of endosomes that remain stationary for at least two consecutive frames (iv), and the 
percentage of time spent pausing (v). The data reported here were generated from 39 wild-type (C57BL/6) animals aged from 1 to over 13 
months, which is a period when transport dynamics are known to remain stable71. Scale bars (A–B) = 10 μm.
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Transport of diverse cargoes can be assessed in 
Drosophila wing sensory neurons over the lifespan 
of the animal
The sophisticated genetic toolboxes of Caenorhabditis elegans 
and Drosophila melanogaster allow the specific targeting of fluo-
rescent proteins to vesicles and organelles such as mitochondria. 
When coupled with the ever-expanding repertoire of neurologi-
cal disease-relevant worm and fly models31–34, these reporter lines 
provide a powerful system for analysing the axonal transport 
of assorted cargoes in both ageing and disease35–40. Transport  
studies in Drosophila have largely been performed in filleted larval 
preparations rather than adult flies, limiting the time period over 
which analyses can be performed and the developmental stage of 
the neurons under investigation. Third instar larvae are typically 
dissected for imaging of fluorescent cargoes predominantly in 
motor axons41,42. Alternatively, microfluidic devices that physi-
cally immobilise intact Drosophila larvae afford a non-invasive  
approach to image axonal transport43,44.

A novel technique to analyse transport dynamics in sensory axons 
of the Drosophila wing has been developed (Figure 2A), which per-
mits the assessment of axonal trafficking throughout the lifespan of 
adult flies45,46. The marginal nerve found on the anterior edge of fly 
wings consists of chemosensory and mechanosensory neurons47,48, 
the cell bodies of which are connected by short dendrites to wing 
bristles, while their axons bundle together and project to the central 
nervous system (CNS)45. Given the translucency of the wing and 
the accessibility of the marginal nerve, rapid and non-invasive light 
microscopy can be performed on different wing regions of flies 
expressing fluorescently tagged proteins specifically in neurons. 
Motivated by previous work in which the same nerve was used to 
evaluate in vivo responses to neuronal injury49,50, the GAL4-UAS 
system was implemented to visualise mitochondria and dense core 
vesicle (DCV) transport dynamics in flies up to 30 days old (their 
natural lifespan being ≈50 days in the laboratory)45. Flies showed 
an early peak in the number of bi-directional moving mitochon-
dria during early adulthood and subsequent decline with age linked 
to misfolded axonal protein accumulations; however, the dynamic 
properties of the moving mitochondria did not change with time. 

Intriguingly, reduced levels of the dynein co-factor Lissencephaly-
1 (Lis1) caused a doubling in the number of motile mitochondria 
across time-points (without increasing their number) and reduced 
the age-associated build-up of protein in the axon45. Contrast-
ing with mitochondria, the percentage of motile DCVs remained 
steady across ages in wild-type flies and was unaffected by reduced 
Lis1 levels, which is indicative of an organelle-specific perturbation 
rather than a global transport defect. Although the Drosophila mar-
ginal nerve cannot be used for whole-mount staining or large-scale 
biochemistry and has no direct counterpart in humans, its simple 
preparation permits quick and non-invasive analysis of anterograde 
and retrograde axonal transport in sensory nerves of adult flies. 
Without constraints on fly age, extended experimental time-points 
can be incorporated, facilitating the study of ageing and neurode-
generation in Drosophila.

Assessment of cargo motility in axons from an array 
of zebrafish neuronal subtypes
As a genetic model, the zebrafish (Danio rerio) possesses many of 
the advantages of the invertebrate species, such as short genera-
tion time and lower maintenance costs, with the added benefit of 
being a vertebrate with myelinated axon tracts51. Also, like worms 
and flies, zebrafish are highly genetically tractable, with an array 
of reporter lines expressing fluorescently tagged proteins in speci-
fied organelles in subsets of cells. Zebrafish larvae are translucent, 
which obviates the need for invasive imaging techniques and allows 
repeated, longitudinal in vivo measurements throughout develop-
ment. Several studies have probed cargo movement in the axons 
of anaesthetised zebrafish, the first of which assessed mitochon-
drial dynamics in sensory nerves called Rohon-Beard (RB) neurons 
found in the tail tip52. These transgenic “MitoFish” were created 
using the GAL4-UAS system to specifically express fluorescent 
proteins in the mitochondria of single RB neurons. A number of 
other groups have created similar fluorescent fish to assess the 
dynamics of RB mitochondria53 and endosomes54,55, as well as lyso-
somes in mechanosensory axons56,57.

Until recently, the bulk of in vivo zebrafish transport analysis was 
conducted in sensory nerves; however, a number of groups have 

Table 1. The benefits and pitfalls of in vivo imaging of axonal transport compared with in vitro and ex vivo 
platforms.

Advantages Disadvantages

Realistic physiological environment (e.g. chemical/
cellular interactions and energy demands)

Harder to study mechanism through experimental 
manipulation (lack of reductionist appeal)

Assessment not always restricted to particular time-
points

Embryonic analysis is challenging and not currently 
possible in all models

Repeated (longitudinal) measurements across broad 
time scales

Distant subcellular comparisons are difficult owing to 
limited imaging fields (e.g. proximal versus distal axons)

Inherent variability of culturing processes and 
dissection artefacts avoided

Disease-relevant cells/tissues can be hard to access (e.g. 
mouse dopaminergic neurons)

Cellular stresses are limited (e.g. continual culture 
growth, dissection/dissociation)

Technically challenging in many instances
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Box 1. Recent major insights into axonal transport provided 
by in vivo imaging

•	 Consistent with sciatic nerve explant data5, the 
percentage of motile mitochondria in the Drosophila 
marginal nerve declines with age, while the dynamic 
properties (run speed and length) remain unchanged45

•	 Reduced levels of the dynein co-factor Lissencephaly-1 
caused an increase in the percentage of motile 
mitochondria in the Drosophila marginal nerve45

•	 Defective mitochondrial transport results in an 
increase of protein aggregation in Drosophila neurons; 
conversely, upregulating mitochondrial transport 
correlates with a delayed appearance of protein 
aggregates45

• In zebrafish retinal ganglion cells (RGCs), disruption of 
Kif5A, a neuron-specific anterograde motor, resulted 
in increased frequency of retrograde mitochondrial 
transport but not synaptophysin-containing vesicles58

• Zebrafish models of Charcot-Marie-Tooth disease type 
2A59 and Parkinson’s disease60 showed mitochondrial 
motility defects in disease-relevant nerve cells

• During larval development (2–5 days post-fertilisation), 
the percentage motility of mitochondria and the ratio 
of anterograde to retrograde movements progressively 
decreased in zebrafish central nervous system (CNS) 
dopaminergic neurons, whereas run length increased, 
but speeds remained stable60

• Amyotrophic lateral sclerosis (ALS) mice, but not 
spinal and bulbar muscular atrophy mice70, display 
pre-symptomatic defects in the transport speeds 
of signalling endosomes in sciatic nerve axons67; 
mitochondrial transport is also perturbed in both SOD 
and TDP-43 models of ALS67,68

• Retrograde axonal transport kinetics (speed, % 
pausing, and % time paused) of signalling endosomes 
in the sciatic nerve remain unchanged from 1 to over 13 
months71, which varies from the age-related transport 
deficiencies reported in different experimental settings 
at similar time points12,89,90

• Bi-directional defects in the transport of both 
mitochondria and peroxisomes are detected in spinal 
cord axons of acute and chronic multiple sclerosis 
mouse models before major symptom onset77

• In mouse RGCs, the number of moving mitochondria, 
but not run length, was decreased prior to cell death in 
a glaucoma model, whereas the duration and distance 
of mitochondrial transport were both diminished with 
age (23–25 months)12

• The vast majority of mitochondria in neonatal and adult 
cortical pyramidal neurons remain stationary over 
periods of up to 20 minutes13,14

Box 2. Outstanding questions that will benefit from 
advances in intravital imaging

• What is the direct biological significance of altered 
cargo pausing and transport speeds?

• Are the defects in axonal transport observed in myriad 
neurological disease a cause of neuronal dysfunction or 
the consequences of a dysfunctional neuron?

o Will therapeutics targeting axonal transport 
ameliorate symptoms of these diseases?

• Does ageing impact all neuronal and cargo subtypes 
equally?

o What mechanisms underlie cargo-specific 
disturbances in transport versus global 
transport deficiencies?

• Why do mutations in mitochondrial91 and motor proteins1 
often manifest in a nervous system-specific pathology?

o Why are neurons particularly vulnerable to 
trafficking defects?

• What causes the axonal transport of distinct cargoes 
to be differentially affected by ageing and disease-
associated mutations?

capitalised on the translucency and genetics of the fish and expanded 
the arsenal of neuronal types amenable to imaging. To assess the 
visual system, transgenic fish expressing fluorescent protein in 
either the synaptic vesicles or the mitochondria of retinal ganglion 
cells (RGCs) were created58. Disruption of the neuron-specific 
anterograde motor Kif5A increased the number of small motile  
synaptophysin-containing vesicles at early developmental stages 
without altering the ratio of anterograde to retrograde transport. In 
contrast, the percentage of mobile mitochondria was unaffected in 
Kif5–/– animals, but mitochondria were transported more frequently 
in the retrograde direction, which likely causes the observed deple-
tion of axonal mitochondria. Similar to the above Drosophila 
study45, these experiments once again highlight that transport of 
distinct organelles can be differentially impacted depending on the 
type and stoichiometry of the motor proteins driving their move-
ment. The results also emphasise the importance of measuring mul-
tiple transport parameters (Box 3), as different conclusions would 
have been reported if just the percentage of motile mitochondria was 
assessed. In addition to RGCs, new transgenic lines have been gen-
erated to assess mitochondrial dynamics in middle primary (MiP) 
motor neurons of the spinal cord59 and CNS dopaminergic neurons60  
(Figure 2B). These fish were used to show that models of Char-
cot-Marie-Tooth disease type 2A (CMT2A)59 and Parkinson’s 
disease (PD)60 display perturbations in mitochondrial motility in  
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disease-relevant neuronal subtypes; CMT2A motor nerves had a 
reduced percentage of motile mitochondria with unchanged speeds, 
while PD dopaminergic neurons displayed multiple transport defects 
dependent on the dose of toxin (MPP+) used to model the disease. 
The percentage of motile mitochondria and the ratio of anterograde 
to retrograde movements decreased during larval development 
(2–5 days post-fertilisation) in wild-type dopaminergic neurons, 
while speeds remained stable and run lengths increased60. Given 
the assortment of neurons now available for imaging, zebrafish 
provide an exciting platform for the in vivo analysis of axonal 
transport during development, with the caveat that once zebrafish 
reach  adulthood, they become opaque, abrogating their utility for  
post-larval analyses.

Peripheral and central nerve transport dynamics can 
both be assessed in mice
Intravital imaging techniques have been developed in mice to study 
a range of biological processes in vivo, including the response to 
spinal cord injury61, retinal degeneration62, and cortical function and 
development63,64. Similar to the animal models mentioned above, 
experimentalists working with mice can use an extended library of 

transgenic fluorescent reporter strains facilitating live imaging28,65. 
Consequently, there has been a recent flurry of publications adapt-
ing these in vivo techniques for the analysis of axonal transport in 
live mice.

Among these, transgenic mice selectively expressing fluorescent 
proteins in neuronal mitochondria called “MitoMice” were gener-
ated by the Lichtman laboratory in 200766. Mitochondria are labelled 
throughout most of the “MitoMouse” nervous system,  permitting 
in vivo analysis across a broad spectrum of neuronal subtypes pro-
vided they can be accessed in live animals. In this publication,  
in vivo axonal transport of individual organelles was imaged for 
the first time in a live mammal66. Mitochondrial kinetics were 
analysed in single motor and sensory axons of surgically exposed  
sciatic nerves using time-lapse confocal microscopy (Figure 2Ci).

Adaptations of this technique have since been developed and 
expounded upon by a number of different laboratories. The  
Schiavo group crossed the “MitoMouse” with the SOD1G93A mouse 
model of ALS and showed that mitochondrial transport speeds are 
pre-symptomatically impaired in sciatic nerve axons, which is one 

Figure 2. Developments in intravital imaging of axonal transport. (A–C) Recent technical advances have permitted the assessment of 
axonal cargo dynamics in a range of neuron types across different live model organisms. In the past few years, organelles have been tracked 
for the first time in sensory neurons of the adult Drosophila wing (orange, A)45,46 and larval zebrafish retinal ganglion cells58, central nervous 
system (CNS) dopaminergic neurons (red, B), and middle primary (MiP) motor neurons (blue, B)59,60. In the mouse, a more experimentally 
challenging animal model because of its non-translucency, in vivo transport was assessed in (i) motor and sensory sciatic nerves11,68,71,72, 
axons of the spinal cord and dorsal roots77, (ii) retinal ganglion cells12, and (iii) distal layer 1–3 cortical pyramidal neurons13,14 (C). The purple, 
dashed-line boxes indicate approximate imaging regions.
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movement was also shown to be impaired67, suggestive of a gen-
eralised transport defect in SOD mutant mice. This is most likely 
caused by global changes in general transport machinery, e.g. the 
microtubule network, as opposed to disruption of multiple cargo-
specific pathways. Confirming that defective retrograde transport 
of signalling endosomes is not a general read out of an impaired or 
aged nervous system, in separate studies spinal and bulbar muscu-
lar atrophy mice70 and wild-type animals aged to over 13 months71 
were both shown to have normal endosome transport dynamics. A 
minor drawback of these studies is that the identity of sciatic nerve 
motor and sensory axons cannot be readily differentiated. Nonethe-
less, there is the possibility of injecting H

C
T into the footpad to  

Box 3. Axonal transport analysis

A multitude of subtly different and sometimes co-dependent axonal transport parameters may be measured. Some features, such as the 
ratio of anterograde to retrograde movements, cannot be assessed for certain cargoes, e.g. signalling endosomes, which are transported 
only from the periphery to the cell soma. Cargo type should thus be considered and the aims of each individual experiment carefully 
determined before selecting from the following analysis options, which may also be subdivided into anterograde, retrograde, bi-directional, 
and combined categories: 

•	 Speed

o Frequency of frame-to-frame speeds (Figure 1Ci)11,67,70,71

o Individual cargo average velocities (Figure 1Cii)71

o Average52,56,71,92 and maximum cargo speeds (Figure 1Ciii)71

o Immobile cargoes can be either included or omitted, and analysed separately59, while movement-only speeds (i.e. 
uninterrupted runs or constant-velocity segments) can be determined52,92

•	 Motility

o Percentage14,35,45 and number20,52,56,92 of motile cargoes in a given time (also called flux)

o Percentage of time motile cargoes are moving12,60

o Average56 and longest45 run distances (run length)

o Run duration12,13,39

•	 Pausing

o Percentage of cargoes that pause (Figure 1Civ)67,71

o Percentage21,71 and length52,77,92 of time that motile cargoes remain stationary (Figure 1Cv)

o Pause frequency52,92

o Percentage13,58 and number20 of cargoes that remain stationary

•	 Anterograde, retrograde, and bi-directional

o Ratio of anterograde to retrograde movements58/net direction of transport35

o Percentage of time spent anterogradely moving/stationary/retrogradely moving36

o Frequency and percentage of cargoes that show reversals in transport direction35

o Percentage of cargoes that oscillate36 or remain uni-directional60

Microscope settings can also impact axonal transport results, so care must be taken when making cross-study comparisons. Furthermore, 
whether recordings will be manually or automatically tracked must also be taken into account. The following should therefore be 
contemplated:

•	 Frame rate: there is always a trade-off between sampling frequency and specimen integrity93,94. For example, a low-frequency 
frame rate (less than 1 Hz) could miss brief pauses, resulting in the recording of slower “moving” speeds for individual cargoes 
and fewer pauses. Rapid frame rates may provide more accurate information but must be offset against how rapidly a sample 
bleaches, potential phototoxic changes to specimen physiology, and the signal-to-noise ratio. Frame rate also directly impacts the 
labour required for analysis if manual tracking of cargoes is carried out.

•	 Imaging time: the longer an axon is imaged, the greater the chance that stationary organelles, particularly mitochondria, will 
become motile. The impact of phototoxicity should also be considered. Imaging over several orders of magnitude can circumvent 
this problem: for example, imaging at 2 Hz for 1 minute followed by 0.2 Hz for 10 minutes95.

of the first observable deficiencies in this disease model67. Another 
laboratory confirmed this result and expanded it to the TDP-43A315T 
mouse model of ALS68. Using a fluorescently tagged atoxic bind-
ing fragment of tetanus neurotoxin (H

C
T), the dynamics of a sec-

ond type of organelle, the signalling endosome, were assessed in 
the sciatic nerve of SOD1G93A mice (Figure 1)67. Fluorescent H

C
T 

was injected under anaesthesia into the gastrocnemius and tibialis 
anterior muscles of the lower leg, where it binds to nidogen recep-
tor proteins of the basement membrane before internalisation at 
the neuromuscular junction69. Once in the nerve terminal, the toxin 
hijacks the retrogradely transported signalling endosomes, which 
can be tracked in sciatic nerve axons in vivo11. Signalling endosome 
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target nociceptive sensory neurons or injecting a fluorescently 
labelled p75NTR neurotrophin antibody into muscle, which is mainly 
taken up by sensory nerves11,67. Moreover, crossing of disease 
models with transgenic mice selectively expressing fluorescent  
proteins in motor axons (e.g. using the Hb9/Mnx1 promoter) 
could also help to overcome this issue. Alternatively, the mainly 
motor femoral nerve72 or primarily sensory sural72 or saphenous 
nerves20 could be imaged either in fluorescent reporter strains or 
by altering the H

C
T injection site to ensure fluorescent signalling  

endosome transport in the appropriate nerve. However, these alter-
native peripheral nerves are more technically challenging to image 
on an inverted microscope because of their anatomical distribution 
and size. Indeed, the sciatic nerve is a large, superficial collection 
of peripheral nerve axons, in which the dynamics of various cargoes 
can be imaged, with the useful possibility for longitudinal analysis 
in the same animal66,72.

In contrast, the mouse CNS is inherently more difficult than the 
relatively accessible peripheral nervous system to image directly; 
nevertheless, axonal transport has now been successfully tracked 
in a number of CNS neurons. Axons within the spinal cord can be 
surgically exposed by dorsal laminectomy and imaged across time 
and several spinal segments in vivo61,73–75, permitting longitudinal 
and location-specific comparisons. Mice expressing fluorescent 
proteins in only a small percentage of sensory neurons have been 
used to assess axonal degeneration caused by spinal cord lesion 
in individual large, myelinated sensory axons found in the dorsal 
aspect of the spinal cord61. Numerous synthetic vital dyes that label 
structures such as myelin and microglia can also be used to aid 
in vivo analysis of the spinal cord76. This technique was recently 
implemented to assess axonal transport in acute and chronic mouse 
models of multiple sclerosis (MS)77. Crossing these strains with 
“MitoMice” and specifically generated “Thy1-PeroxiYFP” mice, 
both mitochondria and peroxisomes, respectively, were imaged in 
spinal cord and dorsal root axons. Pervasive defects in anterograde 
and retrograde transport of both cargo types were observed in MS 
mouse spinal cord axons before the onset of additional deficien-
cies, suggesting that axonal transport defects represent an early and 
important pathological sign in this disease77. These defects were 
not seen in dorsal root axons (sensory nerves), suggesting that 
subcellular location (i.e. proximity to the soma) has a bearing on 
axonal transport defects. However, the sensory identity of the axons 
imaged in the spinal cord was only presumed (owing to their dorsal 
location) and not experimentally confirmed, so the potential site-
specific transport issue could instead be a product of neuron sub-
type (e.g. motor versus sensory).

Multi-photon microscopy has also been used to assess mitochon-
drial transport dynamics in the axons of RGCs of anaesthetised 
“MitoMice” (Figure 2Cii)12. RGC axons extend into the nerve 
fibre layer of the eye, parallel to the ocular surface of the sclera,  
permitting the visualisation of organelles after subtle opening 
of the surrounding skin and conjunctiva. The number of moving 
mitochondria, but not their run length, was diminished before 
RGC death in a model of glaucoma, whereas in aged mice  
(23–25 months), the duration and distance of mitochondrial move-
ment were both diminished12. Interestingly, counter to results 
from retinal explants in the same study, this method showed that 

mitochondrial transport is highly dynamic in the mouse CNS  
in vivo12. Unfortunately, as fluorescence microscopy could impact 
the activity of light-sensitive retinal neurons, this observation may 
be confounded by artefactual alterations in mitochondrial dynam-
ics (i.e. caused by increased activity20). Furthermore, this technique 
is restricted to albino strains because uveal pigmentation prevents 
imaging, and is more technically challenging with gaseous anaes-
thetics because of face access requirement. Nonetheless, in vivo 
comparisons of organelle transport in proximal and distal regions 
of RGC axons allow for repeated, longitudinal analyses.

Finally, a technique developed to image distal layer 1–3 pyrami-
dal neurons of the cortex has been independently adapted by two 
groups to assess axonal transport through a surgically fitted cranial 
window in both anaesthetised and awake mice (Figure 2Ciii)13,14. 
Rather than using transgenic fluorescent strains, plasmids were  
unilaterally electroporated into embryos in utero to target the expres-
sion of fluorescent proteins to both the mitochondria and the cyto-
plasm13 or membranes14 of cortical progenitor cells (the latter to aid 
the identification of successfully transfected neurons). The process 
of electroporation restricts the fluorescence to a small proportion of 
axons, facilitating the assessment of individual collaterals. Similar 
to previous in vivo reports from zebrafish RB sensory52 and CNS 
dopaminergic60 neurons and mouse sciatic nerve axons66, the per-
centage of immobile mitochondria in cortical axons was very high 
over short time periods: >99% in 2 minutes in both pups (P10–13) 
and adults (P70–120)14 and ≈90% at P10–12 over 10–20 minutes13. 
The discrepancy between these two studies could reflect the differ-
ent but overlapping cortical layers that were imaged; however, it is 
more likely caused by the 5- to 10-fold difference in imaging peri-
ods. Indeed, over 95% of mitochondria were reported as stationary 
in mature cortical neurons in culture when imaged for 30 minutes, 
which drops to ≈75% using a 12-hour imaging window13. This 
highlights a key problem in the study of axonal transport: to track 
individual cargo movements, rapid frame rates are required, but 
biologically relevant transport events may occur separated by much 
longer periods (minutes to hours), which is particularly challenging 
for in vivo imaging (Box 3). Thus, although surgically intensive and 
technically demanding, this method of imaging cortical collaterals 
allows repeated, longitudinal analyses of CNS neurons of the brain 
in live, non-anaesthetised mice.

Concluding remarks
The active transport of organelles and molecules along axons is 
critical to neuronal health, function, and survival. Deficiencies in 
this process appear to be intricately linked to ageing and neuro-
degeneration, but whether they play a causal role or are simply a 
consequence of a pathologically affected tissue remains to be fully 
elucidated in each setting (Box 2). There are numerous possibly 
conflicting data reported on the dynamics of axonal cargoes. These 
differences could be due to several reasons, including experimental 
setting and parameters, neuronal subtype, cargo type, time-point, 
axonal location (i.e. distal versus proximal78), and neuronal mor-
phology (e.g. proximity to axonal arbor branches52). With recent 
developments discussed here, we are beginning to acquire a diverse 
and very powerful arsenal of in vivo experimental systems across 
model organisms that will greatly enrich our understanding of 
transport. It is now vital to implement these intravital methods to 
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tackle the questions of when (age), where (neuron category and 
subcellular location), what (cargo type), and how axonal transport 
deficiencies manifest in neuronal dysfunction.

Progress in imaging axonal transport in vivo has challenges 
in common with all in vivo imaging experiments (e.g. limited  
transparency of tissue, restricted imaging depth, and phototoxic-
ity) as well as formidable problems unique to the phenomena 
being studied: namely, relevant scales of measurement that span 
several orders of magnitude, both in time and distance. The dif-
ficulty in labelling cargoes specifically and with a labelling density 
allowing a sufficient signal-to-noise ratio for transport analysis is 
highlighted by the small number of axonal cargoes currently being 
studied, which are almost exclusively membranous organelles. 
Using bright, photoactivatable fluorophores is a particularly help-
ful strategy for studying transport, as it allows the tracking of  
subpopulations of cargo otherwise too dense to study individually or 
sparse cargoes over long time periods13. However, there is an urgent 
need to adopt new labelling strategies and fluorescent reporters to  
understand the behaviour of non-membrane-bound organelles, 
particularly in the field of RNA transport. Much of what has been 
learnt about organelle transport is garnered from experiments on 
mitochondria30; however, their movement within axons, which is 
characteristically interspersed by long pauses and thus perhaps 
more characteristic of slow axonal transport, is not reflective of 
all cargo types. This is perhaps because they have distinct axonal 
roles, rely on specific subsets of adaptor and motor proteins2, and 
are unique, highly dynamic, network-forming organelles. To have a 
thorough and informed understanding of axonal transport in health 
and disease, it is therefore of paramount importance that multiple 
cargo types are analysed.

Most of the methods discussed here are adaptations of intravital 
techniques initially developed to study other biological processes. 
It is therefore likely that imaging of additional neuronal subtypes or 
subcellular locations79–86 could be incorporated into these analyses 
in order to provide a more global assessment of in vivo axonal trans-
port in health and disease. Moreover, as imaging techniques become 
more sophisticated, allowing high-speed, multi-channel acquisi-
tion at greater tissue depths87,88, we will be able to simultaneously 
monitor the dynamics of different organelles in their native environ-
ment and reliably assess the transport of organelles, such as RNA 
granules, for which similar robust protocols are currently lacking.
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