9 research outputs found

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Dynamics of hydration water in gelatin and hyaluronic acid hydrogels

    Full text link
    [EN] We employed broadband dielectric spectroscopy (BDS), for the investigation of the water dynamics in partially hydrated hyaluronic acid (HA), and gelatin (Gel), enzymatically crosslinked hydrogels, in the water fraction ranges [Formula: see text]. Our results indicate that at low hydrations ([Formula: see text]), where the dielectric response of the hydrogels is identical during cooling and heating, water plasticizes strongly the polymeric matrix and is organized in clusters giving rise to [Formula: see text]-process, secondary water relaxation and to an additional slower relaxation process. This later process has been found to be related with the dc charge conductivity and can be described in terms of the conduction current relaxation mechanism. At slightly higher hydrations, however, always below the hydration level where ice is formed during cooling, we have recorded in HA hydrogel a strong water dielectric relaxation process, [Formula: see text], which has Arrhenius-like temperature dependence and large time scale resembling relaxation processes recorded in bulk low density amorphous solid water structures. This relaxation process shows a strong-to-fragile transition at [Formula: see text]C and our data suggest that the VTF-like process recorded at [Formula: see text]C is controlled by the same molecular process like long range charge transport. In addition, our data imply that the crossover temperature is related with the onset of structural rearrangements (increase in configurational entropy) of the macromolecules. In partially crystallized hydrogels ([Formula: see text]) HA exhibits at low temperatures the ice dielectric process consistent with the bulk hexagonal ice, whereas Gel hydrogel exhibits as main low temperature process a slow relaxation process that refers to open tetrahedral structures of water similar to low density amorphous ice structures and to bulk cubic ice. Regarding the water secondary relaxation processes, we have shown that the [Formula: see text]-process and the [Formula: see text] process are activated in water hydrogen bond networks with different structures.The support from Ministerio de Economia, Industria y Competitividad (MINECO) through the MAT2016-76039-C4-1-R project (including the FEDER funds) is acknowledged. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. We thank Dr. P. Klonos for his assistance in preparing scheme 1.Kripotou, S.; Zafeiris, K.; Culebras-Martinez, M.; Ferrer, G.; Kyritsis, A. (2019). Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. The European Physical Journal E. 42(8):1-18. https://doi.org/10.1140/epje/i2019-11871-2S118428M. Heyden, J. Chem. Phys. 141, 22D509 (2014)D. Laage, T. Elsaesser, J.T. Hynes, Chem. Rev. 117, 10694 (2017)R. Biswas, B. Bagchi, J. Phys.: Condens. Matter 30, 013001 (2018)A.S. Hoffman, Adv. Drug Deliv. Rev. 43, 3 (2002)B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Adv. Mater. 21, 3307 (2009)S. Khodadadi, A.P. Sokolov, Soft Matter 11, 4984 (2015)S. Cerveny, I. Combarro-Palacios, J. Swenson, Phys. Chem. Lett. 7, 4093 (2016)F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, S.-H. Chen, J. Phys.: Condens. Matter 24, 064103 (2012)P.W. Fenimore et al., Chem. Phys. 424, 2 (2013)W.G. Liu, K.D. Yao, Polymer 42, 3943 (2001)E. Mamontov, Y. Yue, J. Bahadur, J. Guo, C.I. Contescu, N.C. Gallego, Y.B. Melnichenko, Carbon 111, 705 (2017)J. Swenson, Phys. Chem. Chem. Phys. 20, 30095 (2018)J.L. Finney, Philos. Trans. R. Soc. Lond. B 359, 1145 (2004)P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003)M. Kobayashi, H. Tanaka, J. Phys. Chem. B 115, 14077 (2011)G. Bullock, V. Molinero, Faraday Discuss. 167, 371 (2013)K. Amann-Winkel, R. Böhmer, C. Gainaru, F. Fujara, B. Geil, T. Loerting, Rev. Mod. Phys. 88, 011002 (2016)N. Kastelowitz, V. Molinero, ACS Nano 12, 8234 (2018)U. Kaatze, J. Mol. Liq. 162, 105 (2011)G. Franzese, V. Bianco, S. Iskrov, Food Biophys. 6, 186 (2011)M.D. Fayer, Acc. Chem. Res. 45, 3 (2012)D. Russo, J. Teixeira, J. Non-Cryst. Solids 407, 459 (2015)L. Zhao, K. Ma, Z. Yang, Int. J. Mol. Sci. 16, 8454 (2015)I. Brovchenko, A. Oleinikova, Chem. Phys. Chem. 9, 2695 (2008)M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407, 449 (2015)J. Wolfe, G. Bryant, K.L. Koster, CryoLetters 23, 157 (2002)L. Lupi, A. Hudait, V. Molinero, J. Am. Chem. Soc. 136, 3156 (2014)P. Gallo et al., Chem. Rev. 116, 7463 (2016)O. Mishima, H.E. Stanley, Nature 396, 329 (1998)H.E. Stanley et al., J. Non-Cryst. Solids 357, 629 (2011)F. Bruni, R. Mancinelli, M.A. Ricci, J. Mol. Liq. 176, 39 (2012)F. Caupin, J. Non-Cryst. Solids 407, 441 (2015)N. Shinyashiki, M. Shimomura, T. Ushiyama, T. Miyagawa, S. Yagihara, J. Phys. Chem. B 111, 10079 (2007)S. Gekle, R.R. Netz, J. Chem. Phys. 137, 104704 (2012)P. Ben Ishai, S.R. Tripathi, K. Kawase, A. Puzenko, Y. Feldman, Phys. Chem. Chem. Phys. 17, 15428 (2015)U. Kaatze, J. Chem. Phys. 147, 024502 (2017)D.R. Martin, J.E. Forsmo, D.V. Matyushov, J. Phys. Chem. B 122, 3418 (2018)D.E. Stillman, J.A. MacGregor, R.E. Grimm, J. Geophys. Res. 118, 1 (2013)I. Popov, A. Puzenko, A. Khamzin, Y. Feldman, Phys. Chem. Chem. Phys. 17, 1489 (2015)K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Phys. Chem. B 120, 3950 (2016)T. Yasuda, K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Phys. Chem. B 121, 2896 (2017)P. Pissis, A. Kyritsis, J. Polym. Sci. Part B: Polym. Phys. 51, 159 (2013)J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27, 033102 (2015)S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116, 7608 (2016)N. Shinyashiki, S. Sudo, S. Yagihara, A. Spanoudaki, A. Kyritsis, P. Pissis, J. Phys. C: Condens. Matter 19, 205113 (2007)S. Capaccioli, K.L. Ngai, N. Shinyashiki, J. Phys. Chem. B 111, 8197 (2007)S. Cerveny, Á. Alegría, J. Colmenero, Phys. Rev. E 77, 031803 (2008)C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628 (2009)A. Kyritsis, A. Panagopoulou, P. Pissis, R.S.i. Serra, J.L. Gomez Ribelles, N. Shinyashiki, IEEE Trans. Dielectr. Electr. Insul. 19, 1239 (2012)A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593 (2012)A. Panagopoulou, A. Kyritsis, M. Vodina, P. Pissis, Biochim. Biophys. Acta 1834, 977 (2013)K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Philos. Mag. 91, 1809 (2011)K.L. Ngai, S. Capaccioli, A. Paciaroni, Biochim. Biophys. Acta 1861, 3553 (2017)S. Cerveny, G.A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93, 245702 (2004)J. Swenson, J. Phys.: Condens. Matter 16, S5317 (2004)S. Capaccioli, K.L. Ngai, S. Ancherbak, P.A. Rolla, N. Shinyashiki, J. Non-Cryst. Solids 357, 641 (2011)S. Capaccioli, K.L. Ngai, J. Chem. Phys. 135, 104504 (2011)J.E. Scott, F. Heatley, Biomacromolecules 3, 547 (2002)C. Alber, J. Engblom, P. Falkman, V. Kocherbitov, J. Phys. Chem. B 119, 4211 (2015)T. Hatakeyama, M. Tanaka, A. Kishi, H. Hatakeyama, Thermochim. Acta 532, 159 (2012)A. Pruŝová, F.J. Vergeldt, J. Kucerík, Carbohydr. Polym. 95, 515 (2013)S. Kawabe, M. Seki, H. Tabata, J. Appl. Phys. 115, 125 (2014)O. Miyawaki, C. Omote, K. Matsuhira, Biopolymers 103, 685 (2015)S. Thakur, P.P. Govender, M.A. Mamo, S. Tamulevicius, K. Kumar, V. Thakur, Vacuum 146, 396 (2017)A. Panagopoulou, J. Vázquez Molina, A. Kyritsis, M. Monleón Pradas, A. Valles Lluch, G. Gallego Ferrer, P. Pissis, Food Biophys. 8, 192 (2013)K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Chem. Phys. 140, 124506 (2014)K. Sasaki, A. Panagopoulou, R. Kita, N. Shinyashiki, S. Yagihara, A. Kyritsis, P. Pissis, J. Phys. Chem. B 121, 265 (2017)S. Poveda-Reyes, V. Moulisova, E. Sanmartín-Masiá, L. Quintanilla-Sierra, M. Salmerón-Sánchez, G. Gallego Ferrer, Macromol. Biosci. 16, 1311 (2016)V. Moulisova, S. Poveda-Reyes, E. Sanmartín-Masiá, L. Quintanilla-Sierra, M. Salmerón-Sánchez, G. Gallego Ferrer, ACS Omega 2, 7609 (2017)E. Sanmartín-Masiá, S. Poveda-Reyes, G. Gallego Ferrer, Int. J. Polym. Mater. Polym. Biomater. 66, 280 (2017)L. Greenspan, J. Res. Natl. Bur. Stand. A Phys. Chem. 81A, 89 (1977)F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 305, 40 (2002)R. Pelster, A. Kops, G. Nimtz, A. Enders, H. Kietzmann, P. Pissis, A. Kyritsis, D. Woermann, Ber. Bunsenges. Phys. Chem. 97, 666 (1993)K. Pathmanathan, G.P. Johari, J. Chem. Soc., Faraday Trans. 90, 1143 (1994)Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas, J. Phys. Chem. B 119, 14814 (2015)G.P. Johari, E. Whalley, J. Chem. Phys. 75, 1333 (1981)P.M. Suherman, P. Taylor, G. Smith, J. Non-Cryst. Solids 305, 317 (2002)K.-D. Kreuer, Chem. Mater. 8, 610 (1996)M.G. Mazza et al., Proc. Natl. Acad. Sci. U.S.A. 108, 19873 (2011)E. Brini, C.J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Luksic, K.A. Dill, Chem. Rev. 117, 12385 (2017)O. Andersson, J. Phys.: Condens. Matter 20, 244115 (2008)C. Gainaru et al., Proc. Natl. Acad. Sci. U.S.A. 111, 17402 (2014)G.P. Johari, O. Andersson, Thermochim. Acta 461, 14 (2007)E.B. Moore, E. de la Lave, K. Welke, D.A. Scherlis, V. Molinero, Phys. Chem. Chem. Phys. 12, 4124 (2010)N. Shinyashiki et al., J. Phys. Chem. B 113, 14448 (2009)E.B. Moore, J.T. Allen, V. Molinero, J. Phys. Chem. C 116, 7507 (2012)S.R. Gough, D.W. Davidson, J. Chem. Phys. 52, 5442 (1970)T. Loerting et al., J. Non-Cryst. Solids 407, 423 (2015)K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 27, 1845 (1988)K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 28, 2523 (1989)P. Pissis, A. Kyritsis, V.V. Shilov, Solid State Ion. 125, 203 (1999)J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72, 873 (2000)J.C. Dyre, P. Maass, B. Roling, D.L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009)C. Gainaru et al., J. Phys. Chem. B 120, 11074 (2016)M. Nakanishi, A.P. Sokolov, J. Non-Cryst. Solids 407, 478 (2015
    corecore