216 research outputs found

    IκBKβ and NFκB1 , NSAID use and risk of colorectal cancer in the Colon Cancer Family Registry

    Get PDF
    The NFκB-signaling pathway regulates cell proliferation and inflammation. Activation of the pathway is implicated in the etiology of colorectal cancer (CRC). NSAIDs may reduce CRC risk partially through a nuclear factor-kappa B (NFκB)-dependent pathway. In this study, we investigated associations between 34 NFκB1 and 8 IκBKβ tagSNPs and CRC risk and examined interactions with non-steroidal anti-inflammatory drug (NSAID) use. Using conditional logistic regression, we investigated these associations among 1584 incident CRC cases and 2516 sibling controls from the Colon Cancer Family Registry. Three IκBKβ SNPs were associated with a statistically significant lower colorectal or colon cancer risk: rs9694958 (A>G intron 5) (colorectal: ORhzv = 0.26(0.07–0.99), Ptrend = 0.048, Padj = 0.25), rs10958713 (A>C intron 19) (colon: ORhzv = 0.62(0.42–0.92), Ptrend = 0.005, Padj = 0.03) and rs5029748 (C>A intron 2) (colon: ORhet = 0.72(0.56–0.91), Ptrend = 0.01, Padj = 0.08). We replicated trends associated with NFκB1 and IκBKβ variants identified in a previous study (rs4648110 (T>A intron 22), rs13117745 (G>A intron 5) and rs3747811 (T>A intron 1)). IκBKβ’s rs6474387 (C>T intron 20) and rs11986055 (A>C intron 2) showed substantially lower colon cancer risk among current NSAID users (Pinteraction = 0.01 and Pinteraction = 0.045, respectively), whereas NFκB1’s rs230490 (G>A 5ʹ (outside UTR)) and rs997476 (C>A 3ʹ (outside UTR)) showed higher CRC risk among current NSAID users (Pinteraction = 0.01 and Pinteraction = 0.03, respectively). These findings suggest that variants in NFκB1 and IκBKβ are associated with CRC risk and NSAIDs may function partially through an NFκB-dependent pathway. The SNPs identified here should be considered for future functional studies and may be useful in designing a pharmacogenetic approach to preventive NSAID use

    Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies and subsequent replication studies have shown that single nucleotide polymorphisms (SNPs) in the chromosomal region 8q24 are associated with colorectal cancer susceptibility.</p> <p>Methods</p> <p>We examined 11 SNP markers in the 8q24 region between 128.47 and 128.54 Mb, using a total of 1,987 colon cases and 2,339 controls who self-reported as white from two independent, well-characterized study populations. Analysis was performed separately within each study, and combined using random effects meta-analysis. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) and to test for effect modification by known colon cancer risk factors. We also performed a meta-analysis combining our results with previous studies.</p> <p>Results</p> <p>We observed evidence of association for four SNPs in low to high linkage disequilibrium (r<sup>2 </sup>ranging from 0.18 to 0.93) localized in a 16.2 kb region defined by rs10505477 and rs1056368. The combined results for our two studies of colon cancer showed an OR of 1.10 (95% CI: 1.01-1.20, P<sub>trend </sub>= 0.023), and a meta-analysis of our results with previously reported studies of colon and colorectal cancer strongly support the association for this SNP (combined OR for rs6983267 = 1.21, 95% CI: 1.18-1.24, p = 5.5 × 10<sup>-44</sup>). We did not observe any notable evidence of effect modification by known colon cancer risk factors, and risk did not differ significantly by tumor site or stage.</p> <p>Conclusions</p> <p>Our study confirms the association between polymorphisms on chromosome 8q24 and colon cancer risk and suggests that the susceptibility locus in region 8q24 is not strongly modified by various lifestyle, environmental, and demographic risk factors for colon cancer.</p

    Association between germline variants and somatic mutations in colorectal cancer

    Full text link
    Colorectal cancer (CRC) is a heterogeneous disease with evidence of distinct tumor types that develop through different somatically altered pathways. To better understand the impact of the host genome on somatically mutated genes and pathways, we assessed associations of germline variations with somatic events via two complementary approaches. We first analyzed the association between individual germline genetic variants and the presence of non-silent somatic mutations in genes in 1375 CRC cases with genome-wide SNPs data and a tumor sequencing panel targeting 205 genes. In the second analysis, we tested if germline variants located within previously identified regions of somatic allelic imbalance were associated with overall CRC risk using summary statistics from a recent large scale GWAS (n similar or equal to 125 k CRC cases and controls). The first analysis revealed that a variant (rs78963230) located within a CNA region associated with TLR3 was also associated with a non-silent mutation within gene FBXW7. In the secondary analysis, the variant rs2302274 located in CDX1/PDGFRB frequently gained/lost in colorectal tumors was associated with overall CRC risk (OR = 0.96, p = 7.50e-7). In summary, we demonstrate that an integrative analysis of somatic and germline variation can lead to new insights about CRC

    COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) target the prostaglandin H synthase enzymes, cyclooxygenase (COX)-1 and -2, and reduce colorectal cancer risk. Genetic variation in the genes encoding these enzymes may be associated with changes in colon and rectal cancer risk and in NSAID efficacy

    Contribution of Distinct Homeodomain DNA Binding Specificities to Drosophila Embryonic Mesodermal Cell-Specific Gene Expression Programs

    Get PDF
    Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I–HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.National Institutes of Health (U.S.) (Grant R01 HG005287

    Mendelian randomization of circulating polyunsaturated fatty acids and colorectal cancer risk

    Get PDF
    Background: Results from epidemiologic studies examining polyunsaturated fatty acids (PUFA) and colorectal cancer risk are inconsistent. Mendelian randomization may strengthen causal inference from observational studies. Given their shared metabolic pathway, examining the combined effects of aspirin/NSAID use with PUFAs could help elucidate an association between PUFAs and colorectal cancer risk. Methods: Information was leveraged from genome-wide association studies (GWAS) regarding PUFA-associated SNPs to create weighted genetic scores (wGS) representing genetically predicted circulating blood PUFAs for 11,016 non-Hispanic white colorectal cancer cases and 13,732 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Associations per SD increase in the wGS were estimated using unconditional logistic regression. Interactions between PUFA wGSs and aspirin/NSAID use on colorectal cancer risk were also examined. Results: Modest colorectal cancer risk reductions were observed per SD increase in circulating linoleic acid [ORLA = 0.96; 95% confidence interval (CI) = 0.93-0.98; P = 5.2 × 10-4] and α-linolenic acid (ORALA = 0.95; 95% CI = 0.92-0.97; P = 5.4 × 10-5), whereas modest increased risks were observed for arachidonic (ORAA = 1.06; 95% CI = 1.03-1.08; P = 3.3 × 10-5), eicosapentaenoic (OREPA = 1.04; 95% CI = 1.01-1.07; P = 2.5 × 10-3), and docosapentaenoic acids (ORDPA = 1.03; 95% CI = 1.01-1.06; P = 1.2 × 10-2). Each of these effects was stronger among aspirin/NSAID nonusers in the stratified analyses. Conclusions: Our study suggests that higher circulating shorter-chain PUFAs (i.e., LA and ALA) were associated with reduced colorectal cancer risk, whereas longer-chain PUFAs (i.e., AA, EPA, and DPA) were associated with an increased colorectal cancer risk. Impact: The interaction of PUFAs with aspirin/NSAID use indicates a shared colorectal cancer inflammatory pathway. Future research should continue to improve PUFA genetic instruments to elucidate the independent effects of PUFAs on colorectal cancer

    Pleiotropic effects of genetic risk variants for other cancers on colorectal cancer risk: PAGE, GECCO and CCFR consortia

    Get PDF
    Genome-wide association studies (GWAS) have identified a large number of single nucleotide polymorphisms (SNPs) associated with a wide array of cancer sites. Several of these variants demonstrate associations with multiple cancers, suggesting pleiotropic effects and shared biological mechanisms across some cancers. We hypothesized that SNPs previously associated with other cancers may additionally be associated with colorectal cancer. In a large-scale study, we examined 171 SNPs previously associated with 18 different cancers for their associations with colorectal cancer

    Proceedings of the third international molecular pathological epidemiology (MPE) meeting

    Get PDF
    Molecular pathological epidemiology (MPE) is a transdisciplinary and relatively new scientific discipline that integrates theory, methods and resources from epidemiology, pathology, biostatistics, bioinformatics and computational biology. The underlying objective of MPE research is to better understand the etiology and progression of complex and heterogeneous human diseases with the goal of informing prevention and treatment efforts in population health and clinical medicine. Although MPE research has been commonly applied to investigating breast, lung, and colorectal cancers, its methodology can be used to study most diseases. Recent successes in MPE studies include: 1) the development of new statistical methods to address etiologic heterogeneity; 2) the enhancement of causal inference; 3) the identification of previously unknown exposure-subtype disease associations; and 4) better understanding of the role of lifestyle/behavioral factors on modifying prognosis according to disease subtype. Central challenges to MPE include the relative lack of transdisciplinary experts, educational programs, and forums to discuss issues related to the advancement of the field. To address these challenges, highlight recent successes in the field, and identify new opportunities, a series of MPE meetings have been held at the Dana-Farber Cancer Institute in Boston, MA. Herein, we share the proceedings of the Third International MPE Meeting, held in May 2016 and attended by 150 scientists from 17 countries. Special topics included integration of MPE with immunology and health disparity research. This meeting series will continue to provide an impetus to foster further transdisciplinary integration of divergent scientific fields
    • …
    corecore