9,562 research outputs found

    Spin swap vs. double occupancy in quantum gates

    Full text link
    We propose an approach to realize quantum gates with electron spins localized in a semiconductor that uses double occupancy to advantage. With a fast (non-adiabatic) time control of the tunnelling, the probability of double occupancy is first increased and then brought back exactly to zero. The quantum phase built in this process can be exploited to realize fast quantum operations. We illustrate the idea focusing on the half-swap operation, which is the key two-qubit operation needed to build a CNOT gate.Comment: 5 pages, 2 figure

    Two-Qubit Separabilities as Piecewise Continuous Functions of Maximal Concurrence

    Full text link
    The generic real (b=1) and complex (b=2) two-qubit states are 9-dimensional and 15-dimensional in nature, respectively. The total volumes of the spaces they occupy with respect to the Hilbert-Schmidt and Bures metrics are obtainable as special cases of formulas of Zyczkowski and Sommers. We claim that if one could determine certain metric-independent 3-dimensional "eigenvalue-parameterized separability functions" (EPSFs), then these formulas could be readily modified so as to yield the Hilbert-Schmidt and Bures volumes occupied by only the separable two-qubit states (and hence associated separability probabilities). Motivated by analogous earlier analyses of "diagonal-entry-parameterized separability functions", we further explore the possibility that such 3-dimensional EPSFs might, in turn, be expressible as univariate functions of some special relevant variable--which we hypothesize to be the maximal concurrence (0 < C <1) over spectral orbits. Extensive numerical results we obtain are rather closely supportive of this hypothesis. Both the real and complex estimated EPSFs exhibit clearly pronounced jumps of magnitude roughly 50% at C=1/2, as well as a number of additional matching discontinuities.Comment: 12 pages, 7 figures, new abstract, revised for J. Phys.

    A priori probability that a qubit-qutrit pair is separable

    Full text link
    We extend to arbitrarily coupled pairs of qubits (two-state quantum systems) and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181), which was concerned with the simplest instance of entangled quantum systems, pairs of qubits. As in that analysis -- again on the basis of numerical (quasi-Monte Carlo) integration results, but now in a still higher-dimensional space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical distinguishability) probability that arbitrarily paired qubits and qutrits are separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive primes). This is considerably less than the conjectured value of the Bures/SD probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these conjectures, in turn, rely upon ones to the effect that the SD volumes of separable states assume certain remarkable forms, involving "primorial" numbers. We also estimate the SD area of the boundary of separable qubit-qutrit states, and provide preliminary calculations of the Bures/SD probability of separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures volume of mixed quantum states" to refine our conjecture

    Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems

    Full text link
    We seek to derive the probability--expressed in terms of the Hilbert-Schmidt (Euclidean or flat) metric--that a generic (nine-dimensional) real two-qubit system is separable, by implementing the well-known Peres-Horodecki test on the partial transposes (PT's) of the associated 4 x 4 density matrices). But the full implementation of the test--requiring that the determinant of the PT be nonnegative for separability to hold--appears to be, at least presently, computationally intractable. So, we have previously implemented--using the auxiliary concept of a diagonal-entry-parameterized separability function (DESF)--the weaker implied test of nonnegativity of the six 2 x 2 principal minors of the PT. This yielded an exact upper bound on the separability probability of 1024/{135 pi^2} =0.76854$. Here, we piece together (reflection-symmetric) results obtained by requiring that each of the four 3 x 3 principal minors of the PT, in turn, be nonnegative, giving an improved/reduced upper bound of 22/35 = 0.628571. Then, we conclude that a still further improved upper bound of 1129/2100 = 0.537619 can be found by similarly piecing together the (reflection-symmetric) results of enforcing the simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors. In deriving our improved upper bounds, we rely repeatedly upon the use of certain integrals over cubes that arise. Finally, we apply an independence assumption to a pair of DESF's that comes close to reproducing our numerical estimate of the true separability function.Comment: 16 pages, 9 figures, a few inadvertent misstatements made near the end are correcte

    Hilbert-Schmidt Separability Probabilities and Noninformativity of Priors

    Full text link
    The Horodecki family employed the Jaynes maximum-entropy principle, fitting the mean (b_{1}) of the Bell-CHSH observable (B). This model was extended by Rajagopal by incorporating the dispersion (\sigma_{1}^2) of the observable, and by Canosa and Rossignoli, by generalizing the observable (B_{\alpha}). We further extend the Horodecki one-parameter model in both these manners, obtaining a three-parameter (b_{1},\sigma_{1}^2,\alpha) two-qubit model, for which we find a highly interesting/intricate continuum (-\infty < \alpha < \infty) of Hilbert-Schmidt (HS) separability probabilities -- in which, the golden ratio is featured. Our model can be contrasted with the three-parameter (b_{q}, \sigma_{q}^2,q) one of Abe and Rajagopal, which employs a q(Tsallis)-parameter rather than α\alpha, and has simply q-invariant HS separability probabilities of 1/2. Our results emerge in a study initially focused on embedding certain information metrics over the two-level quantum systems into a q-framework. We find evidence that Srednicki's recently-stated biasedness criterion for noninformative priors yields rankings of priors fully consistent with an information-theoretic test of Clarke, previously applied to quantum systems by Slater.Comment: 26 pages, 12 figure

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness

    Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    Full text link
    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven with a constant rate. The time evolution of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the performed work during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility.Comment: 21 pages, 7 figure

    An experimental test of all theories with predictive power beyond quantum theory

    Full text link
    According to quantum theory, the outcomes of future measurements cannot (in general) be predicted with certainty. In some cases, even with a complete physical description of the system to be measured and the measurement apparatus, the outcomes of certain measurements are completely random. This raises the question, originating in the paper by Einstein, Podolsky and Rosen, of whether quantum mechanics is the optimal way to predict measurement outcomes. Established arguments and experimental tests exclude a few specific alternative models. Here, we provide a complete answer to the above question, refuting any alternative theory with significantly more predictive power than quantum theory. More precisely, we perform various measurements on distant entangled photons, and, under the assumption that these measurements are chosen freely, we give an upper bound on how well any alternative theory could predict their outcomes. In particular, in the case where quantum mechanics predicts two equally likely outcomes, our results are incompatible with any theory in which the probability of a prediction is increased by more than ~0.19. Hence, we can immediately refute any already considered or yet-to-be-proposed alternative model with more predictive power than this.Comment: 13 pages, 4 figure

    Calculation of the unitary part of the Bures measure for N-level quantum systems

    Full text link
    We use the canonical coset parameterization and provide a formula with the unitary part of the Bures measure for non-degenerate systems in terms of the product of even Euclidean balls. This formula is shown to be consistent with the sampling of random states through the generation of random unitary matrices

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone
    • …
    corecore