34 research outputs found

    Radial Star Formation Histories in 32 Nearby Galaxies

    Full text link
    The spatially resolved star formation histories are studied for 32 normal star-forming galaxies drawn from the the Spitzer Extended Disk Galaxy Exploration Science survey. At surface brightness sensitivities fainter than 28 mag arcsec2^{-2}, the new optical photometry is deep enough to complement archival ultraviolet and infrared imaging and to explore the properties of the emission well beyond the traditional optical extents of these nearby galaxies. Fits to the spectral energy distributions using a delayed star formation history model indicate a subtle but interesting average radial trend for the spiral galaxies: the inner stellar systems decrease in age with increasing radius, consistent with inside-out disk formation, but the trend reverses in the outermost regions with the stellar age nearly as old as the innermost stars. These results suggest an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and accretions of satellite dwarf galaxies. The subset of S0 galaxies studied here show the opposite trend compared to what is inferred for spirals: characteristic stellar ages that are increasingly older with radius for the inner portions of the galaxies, and increasingly younger stellar ages for the outer portions. This result suggests that either S0 galaxies are not well modeled by a delayed-τ\tau model, and/or that S0 galaxies have a more complicated formation history than spiral galaxies.Comment: Accepted for publication in the Astronomical Journal. arXiv admin note: text overlap with arXiv:1511.0328

    The NHXM observatory

    Get PDF

    X-ray polarimetry of the accreting pulsar GX 301-2

    Full text link
    The phase- and energy-resolved polarization measurements of accreting X-ray pulsars (XRPs) allow us to test different theoretical models of their emission, as well as to provide an avenue to determine the emission region geometry. We present the results of the observations of the XRP GX 301-2 performed with the Imaging X-ray Polarimetry Explorer (IXPE). GX 301-2 is a persistent XRP with one of the longest known spin periods of ~680 s. A massive hyper-giant companion star Wray 977 supplies mass to the neutron star via powerful stellar winds. We do not detect significant polarization in the phase-averaged data using spectro-polarimetric analysis, with the upper limit on the polarization degree (PD) of 2.3% (99% confidence level). Using the phase-resolved spectro-polarimetric analysis we get a significant detection of polarization (above 99% c.l.) in two out of nine phase bins and marginal detection in three bins, with a PD ranging between ~3% and ~10%, and a polarization angle varying in a very wide range from ~0 deg to ~160 deg. Using the rotating vector model we obtain constraints on the pulsar geometry using both phase-binned and unbinned analysis getting excellent agreement. Finally, we discuss possible reasons for a low observed polarization in GX 301-2.Comment: 10 pages, 10 figures, submitted to A&

    A polarimetrically oriented X-ray stare at the accreting pulsar EXO 2030+375

    Full text link
    Accreting X-ray pulsars (XRPs) are presumably ideal targets for polarization measurements, as their high magnetic field strength is expected to polarize the emission up to a polarization degree of ~80%. However, such expectations are being challenged by recent observations of XRPs with the Imaging X-ray Polarimeter Explorer (IXPE). Here we report on the results of yet another XRP, EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT and SRG/ART-XC. In line with recent results obtained with IXPE for similar sources, analysis of the EXO 2030+375 data returns a low polarization degree of 0%-3% in the phase-averaged study and variation in the range 2%-7% in the phase-resolved study. Using the rotating vector model we constrain the geometry of the system and obtain a value for the magnetic obliquity of ~6060^{\circ}. Considering also the estimated pulsar inclination of ~130130^{\circ}, this indicates that the magnetic axis swings close to the observer line of sight. Our joint polarimetric, spectral and timing analysis hint to a complex accreting geometry where magnetic multipoles with asymmetric topology and gravitational light bending significantly affect the observed source behavior.Comment: A&A accepted. Proofs versio

    X-ray pulsar GRO J1008-57 as an orthogonal rotator

    Full text link
    X-ray polarimetry is a unique way to probe geometrical configuration of highly-magnetized accreting neutron stars (X-ray pulsars). GRO J1008-57 is the first transient X-ray pulsar observed at two different flux levels by the Imaging X-ray Polarimetry Explorer (IXPE) during its outburst in November 2022. The polarization properties were found to be independent of the source luminosity, with the polarization degree varying between non-detection to about 15% over the pulse phase. Fitting the phase-resolved spectro-polarimetric data with the rotating vector model allowed us to estimate the pulsar inclination (130 deg, which is in good agreement with the orbital inclination), the position angle (75 deg) of the pulsar spin axis, and the magnetic obliquity (74 deg). This makes GRO J1008-57 the first confidently identified X-ray pulsar as a nearly orthogonal rotator. The results are discussed in the context of the neutron star atmosphere models and theories of pulsars' axis alignment.Comment: 11 pages, 7 figures, submitted to A&A. arXiv admin note: text overlap with arXiv:2209.0244

    IXPE Observations of the Quintessential Wind-accreting X-Ray Pulsar Vela X-1

    Get PDF
    The radiation from accreting X-ray pulsars was expected to be highly polarized, with some estimates for the polarization degree of up to 80%. However, phase-resolved and energy-resolved polarimetry of X-ray pulsars is required in order to test different models and to shed light on the emission processes and the geometry of the emission region. Here we present the first results of the observations of the accreting X-ray pulsar Vela X-1 performed with the Imaging X-ray Polarimetry Explorer. Vela X-1 is considered to be the archetypal example of a wind-accreting, high-mass X-ray binary system, consisting of a highly magnetized neutron star accreting matter from its supergiant stellar companion. The spectropolarimetric analysis of the phase-averaged data for Vela X-1 reveals a polarization degree (PD) of 2.3% ± 0.4% at the polarization angle (PA) of −47.°3 ± 5.°4. A low PD is consistent with the results obtained for other X-ray pulsars and is likely related to the inverse temperature structure of the neutron star atmosphere. The energy-resolved analysis shows the PD above 5 keV reaching 6%–10% and a ∼90° difference in the PA compared to the data in the 2–3 keV range. The phase-resolved spectropolarimetric analysis finds a PD in the range 0%–9% with the PA varying between −80° and 40°

    The first X-ray polarimetric observation of the black hole binary LMC X-1

    Full text link
    We report on an X-ray polarimetric observation of the high-mass X-ray binary LMC X-1 in the high/soft state, obtained by the Imaging X-ray Polarimetry Explorer (IXPE) in October 2022. The measured polarization is below the minimum detectable polarization of 1.1 per cent (at the 99 per cent confidence level). Simultaneously, the source was observed with the NICER, NuSTAR and SRG/ART-XC instruments, which enabled spectral decomposition into a dominant thermal component and a Comptonized one. The low 2-8 keV polarization of the source did not allow for strong constraints on the black-hole spin and inclination of the accretion disc. However, if the orbital inclination of about 36 degrees is assumed, then the upper limit is consistent with predictions for pure thermal emission from geometrically thin and optically thick discs. Assuming the polarization degree of the Comptonization component to be 0, 4, or 10 per cent, and oriented perpendicular to the polarization of the disc emission (in turn assumed to be perpendicular to the large scale ionization cone orientation detected in the optical band), an upper limit to the polarization of the disc emission of 1.0, 0.9 or 0.9 per cent, respectively, is found (at the 99 per cent confidence level).Comment: 12 pages, 9 figures, 4 tables. Accepted for publication in MNRA

    Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans

    Get PDF
    Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. We used Tandem Mass Tag-labeled quantitative proteomics detecting 2323 proteins in a cohort comprising patients with DILI [at onset (DO) and follow-up (DF)], acute non-DILI [at onset (NDO) and follow-up (NDF)], and healthy volunteers (HV) to identify novel serum biomarkers. Thirteen candidates selected based on differential expression, liver-specific expression, and mechanistic relevance to liver pathology, were assessed in confirmatory and replication cohorts of HV (n=94), DO (n=123), DF (n=110), NDO (n=58) and NDF (n=37) using a targeted label-free SureQuant assay. Area under the receiver operating characteristic curve (AUC) ranging between 0.94 and 0.99 across cohorts for five of these biomarkers, reflected differentiation between DO and HV with high sensitivity and specificity. In addition, fructose-1,6-bisphosphatase 1 distinguished NDO from DO (AUC: 0.75 and 0.65) on its own or in combination with glutathione S-transferase A1 and leukocyte cell derived chemotaxin 2 (AUC: 0.78 and 0.68). These can potentially differentiate DILI and acute liver injury from non-drug etiologies

    Tracking the X-ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition

    Full text link
    We report on a campaign on the bright black hole X-ray binary Swift J1727.8-1613 centered around five observations by the Imaging X-ray Polarimetry Explorer (IXPE). This is the first time it has been possible to trace the evolution of the X-ray polarization of a black hole X-ray binary across a hard to soft state transition. The 2--8 keV polarization degree slowly decreased from \sim4\% to \sim3\% across the five observations, but remained in the North-South direction throughout. Using the Australia Telescope Compact Array (ATCA), we measure the intrinsic 7.25 GHz radio polarization to align in the same direction. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with resolved jet images), this implies that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (\gtrsim10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR (NICER) are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state differs from the common trend seen for other sources, implying that Swift J1727.8-1613 is a member of a hitherto under-sampled sub-population.Comment: Submitted to ApJ. 20 pages, 8 figure

    Magnetic Field Properties inside the Jet of Mrk 421: Multiwavelength Polarimetry Including the Imaging X-ray Polarimetry Explorer

    Full text link
    We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements on 2022 December 6-8. We detected X-ray polarization of Mrk 421 with a degree of ΠX\Pi_{\rm X}=14±\pm1%\% and an electric-vector position angle ψX\psi_{\rm X}=107±\pm3^{\circ} in the 2-8 keV band. From the time variability analysis, we find a significant episodic variation in ψX\psi_{\rm X}. During 7 months from the first IXPE pointing of Mrk 421 in 2022 May, ψX\psi_{\rm X} varied across the range of 0^{\circ} to 180^{\circ}, while ΠX\Pi_{\rm X} maintained similar values within \sim10-15%\%. Furthermore, a swing in ψX\psi_{\rm X} in 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that the X-ray polarization degree was generally \sim2-3 times greater than that at longer wavelengths, while the polarization angle fluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that rotation of ψ\psi occurred in the opposite direction with respect to the rotation of ψX\psi_{\rm X} over longer timescales at similar epochs. The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. The accompanying spectral variation during the ψX\psi_{\rm X} rotation can be explained by a fluctuation in the physical conditions, e.g., in the energy distribution of relativistic electrons. The opposite rotation direction of ψ\psi between the X-ray and longer-wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths.Comment: 17 pages, 13 figures, 4 tables; Accepted for publication in A&
    corecore