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Tandem mass tag-based quantitative pro-
teomic profiling identifies candidate serum
biomarkers of drug-induced liver injury in
humans

Kodihalli C. Ravindra1,18, Vishal S. Vaidya1,18,19 , Zhenyu Wang1,
Joel D. Federspiel 1, Richard Virgen-Slane1, Robert A. Everley1,
Jane I. Grove 2,3, Camilla Stephens 4,5, Mireia F. Ocana1,
Mercedes Robles-Díaz4,5, M. Isabel Lucena 4,5, Raul J. Andrade 4,5,
Edmond Atallah 2,3, Alexander L. Gerbes6, Sabine Weber6,
Helena Cortez-Pinto 7, Andrew J. Fowell8, Hyder Hussaini9,
Einar S. Bjornsson10,11, Janisha Patel12, Guido Stirnimann 13, Sumita Verma14,
Ahmed M. Elsharkawy15, William J. H. Griffiths16, Craig Hyde 1,
James W. Dear 17, Guruprasad P. Aithal 2,3,19 & Shashi K. Ramaiah1,19

Diagnosis of drug-induced liver injury (DILI) and its distinction fromother liver
diseases are significant challenges in drug development and clinical practice.
Here, we identify, confirm, and replicate the biomarker performance char-
acteristics of candidate proteins in patients withDILI at onset (DO; n = 133) and
follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up
(n = 42), and healthy volunteers (HV; n = 104). Area under the receiver oper-
ating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argini-
nosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase,
fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete
separation (range: 0.94–0.99) of DO and HV. In addition, we show that FBP1,
alone or in combination with glutathione S-transferase A1 and leukocyte cell-
derived chemotaxin 2, could potentially assist in clinical diagnosis by distin-
guishing NDO from DO (AUC range: 0.65–0.78), but further technical and
clinical validation of these candidate biomarkers is needed.

Drug-induced liver injury (DILI) is a major clinical problem associated
with significant morbidity and mortality. Most cases of DILI recover
after early detection of causative medication and its discontinuation.
Persistence of DILI symptoms is associated with reduced quality of
life1. Patients who present with acute DILI and concomitant jaundice
have been found to have about 10% risk of mortality or need for liver
transplantation2. A recent long-term follow-up of DILI patients found
that progressive injury contributes to death in 7.6% of patients3.

Moreover, DILI is one of the leading causes for termination of drug
development programs and frequently the source of post-marketing
regulatory actions4,5. Early detection and diagnosis of DILI is a major
challenge as current biomarkers do not distinguish DILI from acute
liver injury due to other etiologies. In clinical practice, elevation of
biomarkers such as alanine aminotransferase (ALT), aspartate amino-
transferase (AST), and alkaline phosphatase (ALP) are used as indica-
tors of hepatocyte or biliary cell injury, along with total bilirubin (TBL)
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concentration that reflects liver dysfunction. However, raised levels of
enzymes may also be found in cardiac and skeletal muscle diseases6,7.
In addition, the widely accepted prognostic model, Hy’s law, is limited
in predicting DILI outcome due to its poor specificity for acute liver
failure8–10.

International collaborative efforts betweenCritical Path Institute’s
Predictive Safety Testing Consortium (PSTC), Safer and Faster
Evidence-Based Translation (SAFE-T) consortium, and Drug-Induced
Liver Injury Network (DILIN) setup a guideline for identifying and
qualifying candidate biomarkers11. They also reported total cytokeratin
18 (CK18), osteopontin (OPN), and macrophage colony-stimulating
factor receptor (MCSFR) as potential prognostic DILI biomarkers and
microRNA-122 (miR-122) and glutamate dehydrogenase (GLDH) as
alternatives to ALT12. Nevertheless, biomarkers that can detect and
diagnose DILI accurately remain elusive.

This study utilized mass spectrometry (MS) with higher-order
multiplexing via an isobaric labeling strategy to simultaneously iden-
tify and quantify serum proteins in multiple cohorts as sensitive and
specific biomarkers for early detection and diagnosis of DILI. We
combined TandemMass Tag (TMT) based reporter methodology with
MS instrumentation capable of providing quantitative accuracy using
synchronous precursor MS3 analysis that eliminates interference.
Then we developed a targeted MS assay to assess the performance
characteristics of the selected candidate biomarkers in a second

longitudinal confirmatory cohort. Finally, the performance character-
isticsof topbiomarkerswere tested in a third,multicenter, prospective
cohort.

Results
Discovery proteomics
During the discovery stage, 2323 proteins were identified in a cohort
comprising patients with DILI, sampled at onset (DO; n = 10) and at
follow-up (DF; n = 10), other acute liver injury (non-DILI), at onset
(NDO; n = 5) and at follow-up (NDF; n = 5), chronic non-alcoholic fatty
liver disease (NAFLD;n = 10), andhealthy volunteers (HV;n = 10) (Fig. 1,
Table 1, and Supplementary Table 1). Levels of the traditional bio-
markers ALT, ALP and TBL all decreased in the follow-up visits (after
8–227 days) for 90% of DILI patients. Levels were also lower in chronic
disease (NAFLD) compared to acute liver injury (DO and NDO).

Out of the 2323 proteins, we first identified proteins where the
relative expression levels significantly differed between the experi-
mental groups using the following pairwise comparisons: DO versus
HV, DO versus DF, NDO versus DO, and NDO versus HV. The differ-
entially expressed proteins were filtered for ‘liver enriched genes’13 to
identify candidates with liver-specific expression. The comparative
analysis identified 48 significant proteins between DO and HV, 42
proteins between DO and DF, 42 proteins between NDO and DO, and
73 betweenNDOandHV. As shown in the Venn diagram (Fig. 2a) a total
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Fig. 1 | Schematic overview of the strategy for discovery, confirmation, and
replication of DILI candidate biomarkers. Biomarkers cytoplasmic aconitate
hydratase (ACO1), fructosebisphosphate aldolase B (ALDOB), argininosuccinate
synthase (ASS1), liver carboxylesterase 1 (CES1), carbamoylphosphate synthase
(CPS1), fructose-1,6-bisphosphatase 1 (FBP1), fumarylacetoacetase (FAH), glu-
tathione S-transferase A1 (GSTA1), 4-hydroxyphenylpyruvate dioxygenase (HPD),

leukocyte cell-derived chemotaxin-2 (LECT2), ornithine carbamoyltransferase
(OTC) were identified using tandem mass tagging (TMT) mass spectrometry (MS)
and subsequent ratio of light peptide/heavy isotopically labeled peptide or
enzyme-linked immunosorbent assay (ELISA) in serum from healthy volunteers
(HV), patients with nonalcoholic fatty liver disease (NAFLD), DILI or non-DILI, either
at onset (DO or NDO, respectively) or at follow-up (DF or NDF).

Article https://doi.org/10.1038/s41467-023-36858-6

Nature Communications |         (2023) 14:1215 2



of 89 proteins (~4% of the proteins from the total proteome) (Fig. 2b),
showed significant differential expression in respective pairwise
comparisons. We first focused on a subset of 51 proteins (highlighted
in bold in Fig. 2a) that were present in at least two comparisons. Out of
these 51 proteins, we found that 21 proteins were shared among all the
groups (including traditionalmarkers, ALT andAST) and 2were shared
between DO, NDO, and HV. Seventeen proteins were able to differ-
entiate NDO from DO and HV. Only 11 proteins (including ALP) dif-
ferentiated DO from HV and DF (Fig. 2a). These 51 proteins were then
ranked and short-listed for further investigations.

Selection of candidate biomarkers
The 51 proteins were ranked based on (1) differential expression, (2)
liver specificity, and (3) mechanistic relevance to liver biology; and top
candidate proteins were short-listed (Fig. 2a). These included: cyto-
plasmic aconitate hydratase (ACO1); argininosuccinate synthase
(ASS1); fumarylacetoacetase (FAH); carbamoylphosphate synthase
(CPS1); fructosebisphosphate aldolase B (ALDOB);
4-hydroxyphenylpyruvate dioxygenase (HPD); ornithine carbamoyl-
transferase (OTC); dimethylglycine dehydrogenase (DMGDH); glu-
tathione S-transferase A1 (GSTA1); fructose-1,6-bisphosphatase 1
(FBP1); mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2);
liver carboxylesterase 1 (CES1). These candidate proteins were taken

forward to quantitatively assess their performance as potential bio-
markers of DILI. In addition, we selected leukocyte cell-derived che-
motaxin 2 (LECT2), a hepatokine highly expressed in the liver that is
involved in liver injury and liver regeneration12. Although LECT2 did
not meet our significance threshold in the discovery analysis, it was
elevated in DO compared to NDO (Supplementary Fig. 1).

Levels of each biomarker were compared across the 6 discovery
cohort groups (Figs. 1, 2c and Supplementary Fig. 1). The serum levels
of CPS1, HPD, FBP1, CES1 (P <0.001), ALDOB, PCK2 (P <0.01), DMDGH,
GSTA1, and OTC (P <0.1), were all lower in DO patients than in NDO in
contrast to LECT2. The expression of all proteins was significantly
different between NDO vs HV (P <0.001) and the median levels of all
except CES1 and PCK2 were lower in NAFLD than DO.

Performance characteristics of biomarkers in differentiating
DILI from HV
The performance characteristics of these candidate protein bio-
markers were next determined in a confirmatory cohort (Fig. 1) that
included samples from DO (n = 82), DF (n = 77), NDO (n = 34), NDF
(n = 22) and HV (n = 60) (Fig. 3 and Supplementary Fig. 2). All pro-
teins except PCK2 were significantly increased in DO by 1.2-fold to
19.5-fold compared to HV (P < 0.0001) and all proteins, except for
LECT2, were decreased in DF (Supplementary Fig. 2, 3). We next

Table 1 | Demographics and clinical characteristics of participants in discovery, confirmatory, and replication cohorts

n Age,
mean ± SD

Male/
female (%)

Most frequent causative agents/conditions ALT, IU/L
median (IQR)

ALP, IU/L
median (IQR)

TBL, mg/dL
median (IQR)

Discovery cohort

HV 10 57 ± 13 60/40 <45 <130 <1.2

DO 10 60± 17 60/40 Flucloxacillin (4), amoxicillin-clavulanate (2),
atorvastatin (2)

166 (106–294) 272 (221–364) 2.4 (1–4.6)

DF 10 60 ± 17 60/40 32 (19–67) 130 (89–164) 0.8 (0.6–1.6)

Mean days between DO and DF: 87

NDO 5 61 ± 15 20/80 Acute biliary obstruction (2), viral hepatitis, auto-
immune hepatitis, other

241 (125–758) 324 (260–365) 2.9 (1.1–3.0)

NDF 5 61 ± 15 20/80 41 (35–51) 146 (89–198) 0.8 (0.5–1.0)

Mean days between NDO and NDF: 51

NAFLD 10 58 ± 15 60/40 51 (42–61) 126 (84–163) 0.8 (0.5–1.0)

Confirmatory cohort

HV 60 51 ± 13 32/68 <45 <130 <1.2

DO 82 54 ± 18 54/46 Amoxicillin-clavulanate (14), atorvastatin (7), ipili-
mumab/nivolumab (6), flucloxacillin (5), infliximab
(4), nitrofurantoin (4), ibuprofen (4), metamizole (3)

339 (184–832) 229 (136–344) 3.6 (0.9–11)

DF 77 54 ± 17 53/47 46 (28–90) 96 (73–149) 0.9 (0.6–1.2)

Mean days between DO and DF: 71

NDO 34 51 ± 20 38/62 Viral hepatitis (16), autoimmune hepatitis (10),
other (8)

686 (282–1251) 237 (167–319) 10 (3.8–19)

NDF 22 56 ± 20 36/64 56 (29–214) 124 (92–183) 2.0 (0.6–10)

Mean days between NDO and NDF: 47

Replication cohort

HV 34 41 ± 17 35/65 <45 <130 <1.2

DO 41 56 ± 17 27/73 Flucloxacillin (8), atorvastatin (7), ipilimumab/nivo-
lumab (3), herbal/dietary supplements (3),
amoxicillin-clavulanate (2)

371 (146–781) 297 (141–410) 4.8 (1.2–14)

DF 33 57 ± 17 27/73 59 (30–141) 124 (105–168) 0.8 (0.6–2.4)

Mean days between DO and DF: 63

NDO 24 53± 17 42/58 autoimmune hepatitis (12), viral hepatitis (8),
other (4)

530 (245–998) 210 (172–316) 5.6 (2.1–21)

NDF 15 54 ± 16 40/60 128 (78–514) 202 (120–313) 2.3 (1.1–11)

Mean days between NDO and NDF: 57

ALP alkalinephosphatase,ALT alanine aminotransferase,DODILI onset,DFDILI follow-up,HVhealthy volunteers, IQR interquartile range,NAFLDnonalcoholic fatty liver disease,NDO non-DILI onset,
NDF non-DILI follow-up, SD standard deviation, TBL total bilirubin.
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evaluated the ability of each protein to detect liver injury (DO versus
HV) by Area Under the Curve (AUC) Receiver Operating Char-
acteristic (ROC) analysis (Supplementary Table 2). The routinely
used biomarkers ALT, AST, ALP, and TBL all had AUCs 0.92–1.0,
whereas GLDH and CK18, previously identified as putative DILI
biomarkers12, had AUCs of 0.86 and 0.96, respectively. The candi-
date biomarkers, ACO1, ASS1, FAH, FBP1, and CPS1 (AUCs: 0.99,
0.98, 0.98, 0.96 and 0.96, respectively) achieved near-complete

separation between patients with liver damage and healthy subjects
(Supplementary Table 2). ALDOB, HPD, OTC, GSTA1, DMGDH, and
CES1 (AUCs: 0.94, 0.94, 0.92. 0.87, 0.86 and 0.80, respectively)
showed high to moderate separation between the groups. This
indicates that these proteins are the most accurate candidate bio-
markers for the detection of DILI, whereas LECT2 (AUC 0.61) and
PCK2 (AUC 0.56) were not able to separate DO from HV (Supple-
mentary Table 2).
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Fig. 2 | Discovery proteomics to identify candidate biomarkers. a Venn diagram
showing statistically significant differentially expressed, liver-enriched proteins (p-
value <0.1, two-sided and Benjamini-Hochberg-adjusted) between DILI onset (DO,
n = 10) and healthy volunteer (HV, n = 10) samples, DO and DILI follow-up (DF,
n = 10) samples, DO and non-DILI onset (NDO, n = 5), NDO and HV. The arrows
indicate the liver-enriched candidate biomarkers selected from each group-wise
comparison. b Heatmap of the 89-liver enriched, differentially expressed proteins
(encoded by 88 genes) between all the 6 groups; + indicates the traditional bio-
markers and # indicates selected candidate biomarkers. The variance stabilizing
normalization (VSN) normalizedexpressiondatawere converted to z-scores by row

and representedwith a color scheme ranging from -1.5 (blue), 0 (white), 1.5 (red), in
101 color step gradients. Row-wise, white represents values at the mean, with red
and blue representing values of at least 1.5 standard deviations above or below the
mean, respectively. c VSN normalized relative expression of candidate biomarkers
identified from the analysis (two-sided and Benjamini-Hochberg-adjusted) shown
in a, HV (n = 10), DO (n = 10), DF (n = 10), NDO (n = 5), NDF (n = 5) and NAFLD
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a Source Data file.
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Wenext replicated these findings by determining the AUC-ROCof
the candidate biomarkers in samples from a third cohort (replication
cohort) consisting of patients with DO (n = 41), DF (n = 33), NDO
(n = 24), NDF (n = 15) and HV (n = 34) (Fig. 1, Table 1, Supplementary
Table 1). Similar results were obtained for the leading biomarkers
which included ACO1, ASS1, FAH, FBP1 and CPS1 (AUCs: 0.98, 0.97,
0.99, 0.94 and 0.95, respectively; Supplementary Table 3).

Multivariate models to differentiate DILI from HV built using
logistic regression (AUC=0.95) and random forest (RF) approaches
(AUC=0.99) with the confirmatory cohort dataset were compared
(Supplementary Fig. 4a). The importance score of each biomarker was
then calculated for the predictive RF model including all 12 candidate
biomarkers (Supplementary Fig. 4b). Candidate biomarkers ACO1,
FAH, ASS1, FBP1, ALDOB, and CPS1 formed a high-score group (scoring
90, 90, 86, 76, 59, and 54 out of 100, respectively) and were subse-
quently used to build 4 prediction models containing different com-
binations of these biomarkers (Supplementary Fig. 4c). The replication
cohort was used as an independent validation dataset to test the AUCs
(Supplementary Fig. 4d). Interestingly, all fourmodels hadAUCs >0.97
(Supplementary Fig. 4d), comparable to the AUCs of individual pro-
teins (Supplementary Tables 2 and 3).

Performance characteristics of biomarkers in distinguishing DO
from NDO
All candidate protein biomarkers were tested in a confirmatory cohort
to verify the performance in distinguishing DILI from acute non-drug
related liver injury. When comparing DO versus NDO, only serum

ALDOB (P <0.05, fold change (FC) FC = 1.7), CPS1 (P <0.03, FC = 1.8),
LECT2 (P < 0.03, FC =0.7), OTC (P < 0.04, FC = 1.6), and FBP1
(P < 0.001, FC = 2.6) levels were significantly altered in NDO patients
compared toDO (Fig. 3). All othermarkers did not show any significant
difference between the two groups, which was consistent with the
findings in the discovery cohort.

We next evaluated each candidate biomarker’s ability to differ-
entiate DO fromNDO by comparing to AUCs of traditional biomarkers
and previously identified biomarkers, (Supplementary Table 2). ALT,
AST, ALP, TBL had AUCs 0.53–0.65, whereas previously identified
biomarkers such as GLDH and CK18 had AUCs of 0.48 and 0.66,
respectively. FBP1 had thehighestAUC (0.75), followedby PCK2 (0.63),
LECT2 (0.62), CPS1 (0.61),OTC (0.61), andALDOB (0.60). TheAUCs for
remaining candidate biomarkers ranged from 0.47 to 0.59 (Supple-
mentary Table 2).

An independent replication cohort was used to test the perfor-
mance of biomarkers in distinguishing DILI from acute non-drug
related liver injury and a consistent trend was observed between
confirmatory and replication cohorts (Supplementary Table 3).

Multivariate models were constructed to identify the distin-
guishability of DILI from acute non-drug related liver injury. Logistic
regression (AUC =0.65) and RF (AUC =0.68) models (Supplementary
Fig. 5a) were trained, tested, and validated using the replication cohort
data as an independent validation dataset. Using a logistic regression
approach, FBP1, GSTA1, LECT2, andCES1 (importance scores: 95, 58, 51,
and 48, respectively) in the high score group of biomarkers were used
to build the models with a combination of two or three biomarkers
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(Supplementary Fig. 5b).With the RF approach, FBP1, LECT2, and CPS1
(importance scores: 100, 42, and 12, respectively) were used to build
the model (Supplementary Fig. 5c, d).

Out of the five multivariate models, RF models (FBP1 + LECT2 and
FBP1 + LECT2 +CPS1) tended to have a higher AUC (Table 2) for the
confirmatory cohort dataset with lower AUC (0.64 and 0.61, respec-
tively) for the replication cohort dataset, which suggests that a
potential over-fit and cross validation was used in the model fitting.
The differences between confirmatory cohort AUCs (0.75–0.78) and
replication cohort AUCs (0.64–0.69) for the logistic regressionmodels
were smaller.

To compare the performance of multivariate models (where
NDO= 1, DO =0), the specificity was set to ≥0.90, and sensitivity then
comparedwithin the confirmatory cohort (Table 3). The thresholdwas
determined by maximizing the sensitivity given specificity ≥ 0.90. The
logistic regressions using 2- and 3-biomarker models had similar spe-
cificities and exhibited strong predictability, as reflected by the AUC
(Fig. 4a, b, Table 3) when comparing NDO to DO in the confirmatory
cohort. Interestingly in the replication cohort, the FBP1 +GSTA1 +
LECT2 model demonstrated a similar performance, but slightly lower
specificity was observed for other models. Similarly, when setting the
sensitivity ≥ 0.90 and specificity was compared, the FBP1 +GSTA1 +
LECT2 model displayed the best performance compared to the other
models suggesting that this model has a higher specificity for identi-
fying patients with DILI than any of the other models. However, the
multivariate model’s predictability was not enhanced when we inclu-
ded the traditional biomarkers (Supplementary Tables 4, 5). In sum-
mary, FBP1 might be a promising standalone biomarker in

differentiating DILI from other types of acute liver injury. This bio-
marker candidate may also provide mechanistic insights for DILI as it
was uniquely associatedwith cluster 15, also known as hep 6 interzonal
region, in a transcriptional map of human liver acinus14 (Supplemen-
tary Fig. 6).

Spearman rank correlation analysis between candidate bio-
markers and ALT
To evaluate biomarker specificity for liver injury we assessed Spear-
man’s r correlation coefficient between levels of each putative bio-
marker (including previously identified biomarkers, GLDH and CK18
and our candidate biomarkers) and ALT activity, in HV andDO cases of
the confirmatory cohort (Fig. 5). GLDH (R =0.70) and CK18 (R =0.85)
showed strong correlation with ALT. The candidate biomarkers ASS1
(R =0.94), ACO1 (R =0.92), ALDOB (R =0.90), FAH (R =0.87), CPS1
(R =0.86), HPD (R = 0.82), OTC (R =0.81) and FBP1 (R =0.75) demon-
strated a stronger correlation with ALT than GLDH or CK18 (Fig. 5 and
Supplementary Fig. 7). All otherbiomarkers correlatedpoorlywithALT
in the confirmatory cohort.

Discussion
There are significant gaps in the current tools available for the diag-
nosis of DILI, which mainly relies on establishing a temporal relation-
ship between drug exposure and liver injury and performing extensive
tests to exclude alternative etiologies15. A recent systematic review
highlighted the urgent need for biomarkers that distinguish DILI from
acute liver injury due to alternative etiologies16. We addressed this
issue by not only investigating the ability of biomarkers to ‘detectDILI’,
but also testing their performance characteristics in ‘distinguishing
DILI from other causes of acute liver injury’. In the present large,
multicenter case-control study, involving 133 patients with DILI and
104 healthy controls, we found candidate protein biomarkers ACO1,
ASS1, FAH, FBP1, and CPS1 that were able to detect DILI (from healthy
controls)with high accuracy (AUC >0.90). In addition, FBP1 alone or in
combination with GSTA1 and LECT2 was able to distinguish acute liver
injury due tonon-drug etiology fromDILIwithAUCsof0.75 and0.78 in
the confirmatory cohort and 0.65 and 0.68, respectively in the repli-
cation cohort. Combining multiple biomarkers has potential for
assisting in the clinical diagnosis of DILI.

Our study design reflects the clinical context by recruiting
patients presenting (or referred) with manifestations of acute liver
injury as evidenced by elevation of liver enzymes and/or bilirubin. Our
strategy is similar to what has been previously described as ‘screen-
and-confirm’ approach17, referring to use of conventional biomarkers

Table 2 | Assessment of logistic regression and random forest
biomarkermodels in the confirmatory and replication cohorts

Method Biomarkers/Models AUC of con-
firmatory
cohort between
NDO vs. DO

AUC of repli-
cation cohort
between
NDO vs. DO

Logistic regression FBP1 +GSTA1 0.75 0.69

FBP1 +GSTA1 + LECT2 0.78 0.68

FBP1 +CES1 + LECT2 0.78 0.64

Random forest FBP1 + LECT2 1.00 0.64

FBP1 + LECT2 +CPS1 1.00 0.61

AUC area under the receiver operating characteristic curve,NDO non-DILI patients at onset, DO
DILI patients at onset. See also Supplementary Fig. 5.

Table 3 | Comparative assessment of candidate biomarker multivariate models at a fixed specificity and sensitivity for the
diagnosis of liver injury

Metric Model Threshold Confirmatory cohort Replication cohort

Specificity ≥0.90 Specificity Sensitivity TN TP FN FP Specificity Sensitivity TN TP FN FP

Logistic
regression

FBP1 +GSTA1 0.50 0.92 0.31 70 10 22 6 0.90 0.13 37 3 21 4

FBP1 +GSTA1 + LECT2 0.45 0.91 0.56 69 18 14 7 0.83 0.33 34 8 16 7

FBP1 +CES1 + LECT2 0.52 0.91 0.47 69 15 17 7 0.85 0.21 35 5 19 6

Random forest FBP1 + LECT2 0.46 1.00 1.00 76 32 0 0 0.83 0.42 34 10 14 7

FBP1 + LECT2 +CPS1 0.46 1.00 1.00 76 32 0 0 0.76 0.46 31 11 13 10

Sensitivity ≥0.90

Logistic
regression

FBP1 +GSTA1 0.14 0.36 0.91 27 29 3 49 0.29 0.96 12 23 1 29

FBP1 +GSTA1 + LECT2 0.14 0.39 0.91 30 29 3 46 0.46 0.88 19 21 3 22

FBP1 +CES1 + LECT2 0.16 0.41 0.91 31 29 3 45 0.46 0.79 19 19 5 22

Random forest FBP1 + LECT2 0.46 1.00 1.00 76 32 0 0 0.83 0.42 34 10 14 7

FBP1 + LECT2 +CPS1 0.46 1.00 1.00 76 32 0 0 0.76 0.46 31 11 13 10

Each model compared onset non-DILI (NDO) cases versus DILI cases (DO) and was trained using the confirmatory cohort and validated using the replication cohort.
TP true positive, TN true negative, FP false positive, FN false negative.
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such as liver enzymes to ‘screen’ for initial signals and then using new
biomarkers for in-depth investigations to ‘confirm’DILI. Thebiomarker
panel including FBP1, GSTA1, and LECT2 demonstrated the best per-
formancecharacteristics as a diagnostic test. Considering thepotential
clinical application of the biomarker, we have identified multiple cut-
off valueswhere this biomarker panel hashigh sensitivity (90%) orhigh
specificity (90%). These cut-offs can be used to rule-in or rule-out DILI
depending on the clinical context of use. We can illustrate the appli-
cation of the putative biomarker panel in the following three clinical
scenarios. First, Breu et al.18 found that 11.3% of patients with ≥1000 IU/
L ALT or AST (defined as ‘acute liver injury’ by the authors) had DILI.
Therefore, using a cut-off value of 0.45 for a positive biomarker panel
(FBP1 +GSTA1 + LECT2) test (Table 2, Fig. 4a), the post-test probability
for the diagnosis of DILI would be 21%. Similarly, Donaghy et al.19

estimated that in patients presenting with ‘hepatic jaundice’ (where
biliary obstruction is ruled out by imaging), the pre-test probability of
DILI would be 15%; in this context, our positive biomarker panel test
would hence result in a post-test probability of 27%. Third, using the
Veterans Health Administration corporate data warehouse, a national
electronic health record repository of clinical and administrative data,

Suzuki A et al.20 identified patients with one of two indicators of acute
liver injury (ALT ≥ 5x ULN, or ALP ≥ 2x ULN) within 90 days from
amoxicillin-clavulanate initiation. They found the pre-test probability
of DILI in their cohort to be 35%; if our biomarker panel test is positive
in this situation, then the post-test probability would be 53%.

Our study found significantly higher expression of FBP1 in acute
non-DILI patients compared to DILI, with a good performance char-
acteristic for the biomarker in distinguishing the two etiologies
(Table 2 and Supplementary Table 2). Multivariate models with com-
binations of GSTA1, LECT2, CES1 and CPS1, demonstrated that the
performance characteristics of FBP1 in separatingDILI from liver injury
due to other etiologies improved further (Table 3). FBP1 is pre-
dominantly expressed in the liver and is responsible for the hydrolysis
of fructose 1,6-bisphosphate to fructose 6-phosphate in the gluco-
neogenesis pathway. As previously reported, elevation of
FBP1 suggests that increased glucose metabolism protects the liver
from injury induced by hepatic apoptosis21. Serum levels of FBP1 have
been shown to be of prognostic value in acute liver failure associated
with 30-day survival in end-stage liver disease22. FBP1 has been shown
to be uniquely associated with hep 6 interzonal region of human liver
acinus14 (Fig. 6 and Supplementary Fig. 6). Overall, 55% of hepatocyte
proteins are zonated23, although further investigations are needed to
understand why markers unique to the interzonal region may serve to
differentiateDO fromNDO.We also linked the gene signatures derived
from spatial transcriptomics to differentially expressed liver enriched
proteins, which mapped GSTA1, OTC, ALDOB and FBP1 to mid-lobule
hepatocytes.

Within the confirmatory cohort LECT2 was the only candidate
biomarker that was significantly increased in DO compared to NDO
(Fig. 3). The hepatokine LECT2 enhances lipopolysaccharide (LPS)
stimulated activation of tissue macrophages contributing to the
development of inflammation24. Interestingly, a non-toxic dose of
trovafloxacillin coupled with LPS-induced inflammation caused acute
liver injury in rodentmodels25. LECT2, considered to be a biomarker of
regeneration, has been shown to be a prognostic indicator of acute
liver failure26, whereas GSTA1, a phase II detoxification enzyme pri-
marily enriched in the liver, is considered a marker of hepatocyte
injury in vitro and an early indicator of liver injury in mice27,28.

Some of the candidate biomarkers identified in this study have
been previously reported in animalmodels of acetaminophen-induced
liver injury29–33, and humanDILI12,29–31,34 and described as having roles in
liver injury or recovery35–37. However, here we have comprehensively
evaluated the biomarker performance characteristics of these proteins
in comparison with other established or proposed biomarkers.

Although serum ALT and GLDH elevations are accepted to be
relatively liver-specific, ALT can be associated with muscle injury, and
elevated levels of GLDH have been observed without
hepatotoxicity6,37,38; therefore a biomarker with greater liver specificity
could be advantageous for the detection of DILI in specific clinical
settings. ALDOB, CPS1, and OTC are highly liver-specific and per-
formed well against GLDH. ALDOB, a component of the glycolytic
pathway,was significantly higher inDOcomparedwithHV and showed
a strong correlation with ALT activity (R =0.9) (Fig. 5). This is con-
sistent with observed troglitazone-induced hepatotoxicity in humans
associated with the appearance of autoantibodies to ALDOB, and the
correlation between ALDOB elevation and the extent of liver
dysfunction34,39. In addition, CPS1 and OTC, which are mitochondrial
urea cycle enzymes, were elevated in the DO patients and correlated
well with ALT activity (R =0.86 and 0.81). This aligns with reports that
CPS1 is released into the bloodstream during acetaminophen-related
acute liver injury in mice as well as humans and could potentially
indicate prognosis30,40. Furthermore, CPS1 has been proposed as an
early indicator of recovery from DILI due to its short serum half-life,
whereas high ALT levels persist longer in the blood30,41. OTC is pri-
marily expressed in hepatocytes and is released into the blood in rat
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liver dysfunction models42. It has been proposed to be an indicator of
hepatotoxicity both in clinical and drug development settings43.

In the current study, the liver enriched proteins ACO1, ASS1, and
FAH were elevated in DILI patients compared with HV and strongly
correlated with ALT activity (R = 0.87–0.94). Interestingly, FAH and
ASS1 were previously identified as promising specific biomarkers for
liver injury using a proteomics approach31,34. The liver enzymeASS1 has
also been suggested as a specific indicator of liver injury in mouse
models; it is elevated in acetaminophen overdose patients and can be
detected in humans with moderate liver injury29,31. Nevertheless,
additional focused mechanistic studies are needed to determine the
roles and significance of all these candidate biomarkers.

The current study has several strengths. First, it was embedded
within the clinical pathway followedbypatientswithDILI, whichmeans
that the biomarkers were evaluated in the context of their use. In
addition, both DILI cases and acute non-DILI controls were thoroughly
investigated with causality of DILI systematically assessed using the
Roussel Uclaf Causality Assessment Method44 and etiology of liver
injurywas consistently adjudicatedby anexpert panel. Second, a large-
scale systematic and comprehensive proteomic analysis byTMT-based
isobaric tagging methodology was undertaken using DILI patients as
well as several control groups. Most previous studies have not inclu-
ded acute non-DILI groups to test the ability of biomarkers to distin-
guish DILI from alternative acute non-DILI cases16. However, a previous
smaller study conducted metabolomics profiling of 10 patients with
DILI and compared it with chronic liver disease subgroups and hepa-
tocellular cancer patients45, while another study46 compared metabo-
lomic changes between 13 DILI patients, 12 with autoimmune hepatitis
and 24 with viral hepatitis. These studies showed that metabolic
markers have the potential to discriminate and improve the clinical
diagnosis of DILI. At present, diagnosis of DILI is reliant on a compa-
tible temporal relationship betweendrug exposure and liver injury and
extensive investigations to exclude alternative explanations with no
specific test done to support or rule out DILI diagnosis. Therefore, the

panel that we have evaluated and validated has the potential to fill
this gap.

This study has some limitations. Although DILI cases and acute
non-DILI control groups were all enrolled using a single protocol, with
pre-defined liver biochemistry thresholds, significant variability in
characteristics persisted between these groups and within the groups
(Supplementary Table 1). Individual drugs are also associatedwith DILI
of different phenotypes, but the number of cases in the current study
was insufficient for subgroup analyses among different biochemical
patterns of injury or drug types. However, the design of this study is
based on the premise that common, or a particular combination of
mechanisms underpin DILI resulting from a broad group of drugs.
Although ‘proximal’ steps (upstream events) in the development of
DILI are likely to be drugs/class specific, ‘distal’ steps (downstream
events) are likely to be shared by DILI due to multiple drugs, so may
have common biomarkers. Similarly, the acute non-DILI control group
was formedby acute liver injury due to awide rangeof etiologies. Since
we followed strict consecutive recruitment of available cases to max-
imize recruitment, theDILI andnon-DILI cohorts couldnot bematched
for age, sex, BMI. Furthermore, this resulted in differences in liver
profile values between the DILI and acute non-DILI control group, with
the latter mostly presenting higher values in all three cohorts. How-
ever, this reflects the case composition, since viral hepatitis and
autoimmune hepatitis that comprised a large portion of the acute non-
DILI liver injury group, are generally associatedwith higher liver profile
values. Further refinement requires a larger cohort to enable analyses
using specific acute non-DILI subtypes and DILI due to specific drugs.
Enrollment is underway to address these limitations and to strengthen
the findings reported in this study47.

Costs and limited access to new tests can be a barrier in the
translation to clinical practice. The development and implementation
of MS-based biomarker measurements in diagnostic or healthcare
facilities would require substantial investments and expertise. Alter-
natively, enzyme-linked immunosorbent assay-based quantification is

GLDH CK18 ASS1 ACO1

ALDOB FAH CPS1 FBP1

Fig. 5 | Correlation between biomarkers and ALT. Spearman’s r correlation
coefficient (R) (test R = 0 or not, two-sided, no adjustment) was calculated between
ALT andeitherpreviously identifiedbiomarkers (glutamatedehydrogenase (GLDH)

and cytokeratin-18 (CK18)) or candidate biomarkers. Circles indicate HV (n = 60)
andDO (n = 82) samples from the confirmatory cohort. Values are log2 transformed
and p values are shown. Source data are provided as a Source Data file.
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feasible with acceptable costs but needs development for routine use.
Future integration of metabolic and/or genetic biomarkers from other
studies may also further enhance this panel.

In conclusion, we identified candidate protein biomarkers that are
able to detect DILI and distinguish it from acute non-drug related liver
injuries in a prospective cohort of patients with manifestations of
acute liver injury presenting to a secondary care hospital setting. If the
diagnostic and prognostic performance of these biomarkers is vali-
dated in an independent large case-control study, could pave the way
for a step change in clinical practice as well as in monitoring for DILI in
clinical trials.

Methods
Participants
All study participants provided written informed consent. Studies
complied with the Declaration of Helsinki, Good Clinical Practice
(Directive 2001/20/EC) and general data protection regulations (EU)
2016/679. Suspected DILI cases were consecutively recruited at cen-
ters across Europe between April 2016 and July 2021: UK, Spain, Ger-
many, Iceland, Portugal; approved by: Yorkshire and the Humber -
Leeds East Research Ethics Committee (Ref15./YH/0294); Biomedical
Investigation Ethics Committee of Andalucia (Ref: AND-HEP-2015-01);
Ethical Commission of Ludwig Maximilian University of Munich (Pro-
ject 85-16); Bioethics Committee Iceland (Ref: 15–104-V1); Ethics

Comission of Centro Académico Médico de Lisboa (Ref: 126/15) and
National Data Protection Comission Portugal (Authorization 479/
2016), respectively. Standard clinical investigations including imaging
were performed and cases were followed until liver profile normal-
ization where possible.

Causality assessment was performed48 and the cases were
reviewed by an expert panel of at least three experienced clinical
hepatologists or clinical pharmacologists from three different Eur-
opean academic centres47. The panel adjudicated episodes as DILI or
alternative diseases termed ‘acute non-DILI. They excluded patients
where the investigations were inconclusive or when disagreement of
probable diagnosis occurred within the panel. Both DILI and non-DILI
groups met the same biochemical criteria as defined previously48,
having serum ALT ≥ 5x ULN or ALT ≥ 3x ULN plus TBL≥ 2x ULN or
ALP ≥ 2x ULN with accompanying elevations of gamma-glutamyl
transferase. DILI was diagnosed based on the presence of a compa-
tible temporal sequence between drug intake and detection of liver
injury as well as test results to exclude alternative conditions, which
included, but were not limited to, viral serology, viral load, imaging
tests, presence of autoantibodies, immunoglobulin G values and
biopsy findings (when available). Table 1 and Supplementary Table 1
show clinical and demographic data, the primary causative drug
implicated in DILI and etiology of acute non-DILI controls. Cases of
acetaminophen overdose were not excluded and were eligible as an
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Fig. 6 | Visualization of liver pathway signatures. Visualization of apparent dif-
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sample gene set enrichment analysis of the discovery proteomics dataset. Pathway
enrichment from differentially expressed genes between NDO (n = 5) and HV
(n = 10), and NDO and DO (n = 10) shown in Supplementary Fig. 6. Pathway scores
are calculated from expression data for each gene set to allow side-by-side visua-
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between a capillary network and a central vein and liver interzonal signature
expression plotted below the lobule zones. Smooth lines were generated by loess
method, gray indicates standard deviation. Zonal expression levels of differentially
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as a Source Data file.
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acute control, although none were recruited during the period of this
study. The ‘onset’ samples for both DILI cases (DO) and acute non-DILI
controls (NDO)were collected at the timeof enrollment into the study.
A second sample termed ‘follow-up’was collected from both DILI (DF)
and acute non-DILI control (NDF) group patients (median follow-up of
35 days after the enrollment). This was to explore the trajectory of
biomarkers in relation to the course of the liver injury. Patients who
had liver enzymes belowULN at the follow-up visit were considered to
have ‘complete recovery’. Those patients where liver enzymes
decreased at follow-up but remained above ULN were termed ‘partial
recovery’ (Supplementary Table 6).Where therewasno follow-up visit,
levels recorded in clinical notes were used to define recovery type.

HV and patients with biopsy-proven chronic liver disease (NAFLD)
were enrolled as additional control groups. These controls were sex
and age matched to the DILI cases and were recruited in parallel in
Nottingham for research approved by East Midlands Nottingham 2
research ethics committee (Ref: GM0102010). HV had no diagnosis of
liver disease and for those included in the discovery cohort, absenceof
fatty liver was confirmed using controlled attenuation parameter of
transient elastography or transabdominal ultrasound examination.
Subsequent cohorts were not screened for fatty liver but had no
diagnosis of liver disease. Serum samples obtained were stored at
−80 °Cuntil analysis. Both sexeswere included in the study design. Sex
data was collected based on self-reporting. Proportions in sub-groups
are reported, but sex-based analyses could not be performed due to
the small cohort size.

Discovery experiment design
Global proteomics analysis involved TandemMass Tag (TMT) isobaric
labeling of peptides for the identification and relative quantitation of
proteins by multiplexing the 50 discovery cohort participants (Fig. 1)
using 11-plex TMT reagents (randomized into 5 sets). The sampleswere
analyzed using a Thermo Orbitrap Fusion MS. A list of biomarker tar-
gets was compiled using statistical significance between DO and HV,
DO and DF, DO and NDO, NDO and HV (Fig. 2b).

Discovery proteomics workflow
Immunoaffinity depletion: serum samples were depleted with a dual
immune-affinity approach employing Seppro IgY14 (LC10) and
Supermix (LC5) columns (Sigma) according to the manufacturer’s
instructions. 100 μL of serum was diluted fivefold into 1X Seppro
Dilution buffer and filtered using 0.45 μM spin filters at 4 °C for 10min
at 9000 g. An Agilent 1200 HPLC system was used for automated
control of the dual depletion setup. Immunoglobulin (IgY14) and
Supermix columns were connected in tandem through a column
selection valve to allow for automated selection of the flow path. The
diluted and clarified serum samples were injected onto the IgY14 col-
umnwith the column selection valve set to flow through both columns
in tandem,while runningBuffer A (1X SepproDilutionBuffer, Sigma) at
0.5mL/min. The flow-through protein fraction was collected into a
chilled (4 °C) autosampler using timed collection over four 3mL
fractions. Upon collection of the flow-through peak, the column
selection valve was switched such that flow was directed solely
through the IgY14 column, and 100% Buffer B (1X Seppro Stripping
Buffer, Sigma) flowed at 2mL per minute. Upon complete elution of
the IgY14 bound fraction, proteins bound to the supermix column
were eluted by switching the column selection valve for tandem flow
over both immunodepletion columns, continuing flow of 100% Buffer
B at 2mL/min. Upon elution of the supermix bound fraction, both
columns were neutralized and re-equilibrated by flowing 100% Buffer
C (1X Seppro Neutralization Buffer, Sigma) in tandem over both col-
umns at 2mL/min for 18min, followed by re-equilibration with 100%
Buffer A for 20min.

Digestion: pooled flow-through fractions (depleted fractions)
from each samplewere concentrated via Amicon filtration units (4 kDa

MWCO), diluted with 10mL 8M urea in 100mM EPPS (4-(2-Hydro-
xyethyl)-1-piperazinepropanesulfonic acid) pH 8.1, and re-
concentrated in the same filtration unit to 300μL. Concentrated
samples were reduced with DTT (5mM) for 1 h at room temperature,
alkylated with Iodoacetamide (15mM) for 1 h at room temperature in
the dark, and quenched with DTT to 10mM. Reduced and alkylated
samples were digested with Lysyl endopeptidase (LysC, Wako Che-
micals USA) at 1:25 enzyme:protein overnight at room temperature,
diluted to 1Mureawith 100mMEPPS pH8.1, and digestedwith trypsin
(Promega) at a ratio of 1:15 enzyme:protein for 6 h at 37 °C. Digestion
efficiency of >90% was verified by micropurification (C18 STAGE tips)
and fluorescence peptide assay (Thermo Scientific, Cat# 23290), fol-
lowed by LC-MS analysis (35min gradient) of 5% of 3 samples from
each group of 10 samples.

TMTLabeling: digested sampleswere purifiedbyC18 SepPak, and
eluted samples were dried down via speedvac. Samples were resus-
pended in 100 μL of 100mM EPPS pH 8.1 and labeled with 500 μg of
TMT 11-Plex reagent (ThermoFisher). Labeling efficiency (>95% label-
ing efficiency) was verified by mixing 2% of each sample from each 10-
plex, micropurification (C18 STAGE tips) and LC-MS analysis (85min
gradient). Based on the total intensity observed from each TMT
channel in the labeling efficiency check, the remainder of each sample
for each 10-plex was mixed such that total signal in each channel was
approximately equal. Themixed samplewas purified byC18 Sep Pak to
remove the unreacted TMT, hydroxylamine, salts, and eluted peptides
were concentrated via speedvac.

TMT-bridge normalization: the bridge sample was made by
combining an equal aliquot of each sample and including that mixed
sample within each plex. The bridge normalization is a ratio of each
sample to the bridge sample. After normalizing for mixing errors
(making the sum signal of all samples the same) each sample within
each plex was normalized to the bridge channel by dividing by the
bridge signal, such that <1 = lower than bridge and >1 = higher than the
bridge.

Fractionation: labeled, mixed samples were fractionated by high
pH reversed phase chromatography into 96 fractions, using an Agilent
1200 seriesHPLC system, and a 3 × 100mMcolumnpackedwith 1.9 µm
C18 Poroshell material (Agilent). Chromatography was achieved by
running a gradient of 5%Buffer B (10mMammoniumbicarbonate, 90%
acetonitrile) to 35% Buffer B in Buffer A (10mM ammonium bicarbo-
nate, 5%acetonitrile), over 60minwith timed fraction collection. These
96 fractions were pooled into 24 fractions. Fractions were dried via
speedvac, cleaned by C18 micropurification, and analyzed via LC-MS.

LC-MS Analysis: peptide fractions were separated using a 120min
linear gradient from 8 to 25% acetonitrile in 0.1% formic acid. The MS
was operated in a data dependent mode. The scan sequence began
with FTMS1 spectra (resolution = 120,000; mass range of
350–1400m/z; max injection time of 50ms; Automatic Gain Control
(AGC) target of 1e6; dynamic exclusion for 60 s with a +/−10 ppm
window). The tenmost intense precursor ions were selected for ITMS2
analysis via collisional-induced dissociation in the ion trap (normalized
collision energy) = 35; max injection time = 100ms; isolation window
of 0.7 Da; AGC target of 2e4). Following ITMS2 acquisition, a
synchronous-precursor-selection MS3 method was enabled to select
10MS2 product ions for higher energy collisional-induced dissociation
with analysis in the Orbitrap (normalized collision energy = 55; reso-
lution = 50,000; max injection time = 110ms; AGC target of 1.5e5;
isolation window at 1.2 Da for +2m/z, 1.0Da for +3m/z or 0.8Da for +4
to +6m/z).

All mass spectra were converted to mzXML using a modified
version of ReAdW.exe. MS/MS spectra were searched against a con-
catenated 2018 human Uniprot protein database containing common
contaminants (forward + reverse sequences) using the SEQUEST
algorithm49. Database search criteria were as follows: fully tryptic with
two missed cleavages; a precursor mass tolerance of 50 ppm and a
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fragment ion tolerance of 1 Da; oxidation of methionine (15.9949Da)
was set as differential modifications. Static modifications were iodoa-
cetamide on cysteines (57.02146374) and TMT on lysines and
N-termini of peptides (229.1629). Peptide-spectrum matches were fil-
tered using linear discriminant analysis50 and adjusted to a 1% peptide
false discovery rate (FDR)51 and collapsed further to a final 1.0%
protein-level FDR. Peptides were assigned to proteins based on prin-
ciples of parsimony. Peptides were assigned to the minimum set of
proteins (IPI database entries) that could account for all peptides in the
dataset. Proteins were quantified by summing the total reporter
intensities across all matching PSMs.

IQP address: IQ Proteomics (http://www.iqproteomics.com/),
LLC, 840 Memorial Drive, Cambridge, MA 02139.

Targeted MS
The performance of candidate biomarkers in confirmatory and repli-
cation cohorts were monitored using internal standard triggered par-
allel reaction monitoring (SureQuant)-based relative quantification
assays52. A minimum of three peptides per protein were selected for
targeted assay development and the selection criteriawere basedon: 1.
peptide abundance during discovery work, 2. protein unique
sequence, 3. absenceofmethionine and cysteine residues, 4. no known
modifications on amino acid residues, 5. no trypsin missed cleavages.
The synthetic isotopically labeled lysine and arginine-15N, 13C ( ≥ 99%
isotopic purity and ≥90% peptide purity) peptides were purchased
from New England Peptides/Vivitide (https://vivitide.com/). Heavy
labeled peptides were used as internal standard during the sample
preparation and analysis. The list of selected peptides is reported in
Supplementary Table 7.

Quantitative proteomics workflow
Sample preparation: serum samples were depleted with a high select
Top14depletion resin (Fisher Scientific, Cat#A36372). A 600μL of 50%
of well mixed resin slurry was added into the each 96-well plate (Agi-
lent PN 200957-100) followed by the addition of 30 μL serum samples
and incubated for 15min with gentle shaking. The use of Top14 resin
allowed us to deplete the top 14 highly abundant proteins in human
serum and improve the throughput of the process. The depleted
samples were collected into the 96-well collection plate by centrifu-
ging in a swinging bucket rotor for 2min at 100 g. The protein eluant
were then concentrated via Amicon filtration units (3 kDa MWCO)
(Fisher Scientific, Cat# UFC500324). The protein concertation was
measured using Micro BCA kit (Fisher Scientific, Cat# PI23235) and
then adjusted to 1 μg/μL using 8M urea in 100mMEPPS pH 8.5. A 100
μg aliquot of protein from each sample were transferred into eppen-
dorf tube followed by the addition of 400mM DTT (Sigma Aldrich,
Cat# D9779) to 5mM. The disulfide bondswere reduced by incubating
the samples for 1 h at room temperature shaking at 1000 rpmandwere
alkylated by the addition of 550mM iodoacetamide with a final con-
centration of 15mM (Sigma Aldrich, Cat# I1149) by incubating at 1 h in
the dark. The alkylated protein samples were diluted to 1Murea by the
addition of 100mM EPPS pH 8.5. Proteins were digested by adding
lysyl endopeptidase (LysC, Wako Chemicals USA) at a ratio of 1:25
enzyme:protein overnight at room temperature. The second digestion
was carried out using trypsin (Promega, Cat# V5111) at a ratio of 1:15
enzyme:protein for 6 h at 37 °C. After digestion, trypsin was inacti-
vated by the addition of 10% formic acid to a final concentration of
0.5%. The tryptic peptides were concentrated and desalted with
Strata™-X 33 µmPolymeric Reversed Phase 10mg / well, 96-Well Plates
(Phenomenex Cat# 8E-S100-AGB) according to the manufacturer’s
instructions and were dehydrated to dryness in a speedvac.

LC-MS/MS analysis
Digested peptides (1μg) were analyzed by LC-MS/MS using a Dionex
Ultimate 3000 UPLC (ThermoFisher Scientific) coupled online to an

EASYSpray ion source and Exploris 480 MS (ThermoFisher Scientific).
Peptides were resolved using an EASYSpray C18 reverse phase column
(75 µm× 50 cm, ES803 Thermo Fisher Scientific) heated to 50 °C at a
flow rate of 250 nL/min. A linear gradient of solvents A (0.1% formic
acid in water) and B (0.1% formic acid, 90% acetonitrile) was run from
1–30% B over 30min. Peptides were ionized at 1.7 kV and acquired on
the Exploris 480 using SureQuant (ThermoFisher Scientific) internal
standard triggered parallel reaction monitoring methodology52.

During the SureQuant runs, an MS1 scan from 400m/z to
1000m/z was acquired at 120,000 resolution with an AGC target of
3e6 and a maximum injection time of 50ms. Following detection of a
stable isotope labeled (SIL) peptide precursor above a minimum
threshold (Supplementary Table 7 and 8) in the MS1 scan, a data-
dependent MS2 scan of the SIL was acquired at a resolution of 15,000
with an AGC setting of 1e6, a maximum injection time of 20ms, and a
higher energy collisional-induced dissociation setting of 30%. Detec-
tion of 4 out of 6 prominent product ions (Supplementary Table 8)
from the SIL resulted in a triggered acquisition of the light peptides via
a data-dependent MS2 scan with an isolation offset dependent on the
terminal amino acid and charge state of the SIL peptide at a resolution
of 60,000 with an AGC setting of 1e6, a maximum injection time of
116ms, and anhigher energy collisional-induceddissociation settingof
30%. All spectra were acquired as profile. Design and analysis of the
SureQuant targeted runs was performed in Skyline53. Manual inspec-
tion of all spectra was performed, and endogenous light peptide
transitions were compared against the heavy standard in the same run.
For endogenous peptides that were not detected in a sample, noise
peaks in the retention time region of the heavy peptide were inte-
grated to avoid missing values. Quantitation was reported as the light/
heavy ratio of the most abundant transition for each peptide.

Biomarker assays
Liver function tests for patients followed the local policy for current
standard of clinical care at the respective recruiting centers via
accredited medical laboratories. GLDH was evaluated using a Siemens
Advia 1800 chemistry analyzer. CK18 and PCK2 were measured by
SpectraMax 500 from Molecular Devices using CK18 M65 EpiDeath
(Cat# P10040) and BioMatik (Cat# EKN47708) ELISA kits.

Biomarker selection
For differential expression analysis of pairwise comparisons significant
changes were defined by adjusted p-value: we did not set a threshold
for FC. The identities of liver enriched genes were obtained from the
human protein atlas (https://www.proteinatlas.org/)13.

Proteins identified during discovery phase were ranked by com-
parison statistics (cut-off: Benjamini-Hochberg adj P <0.1), followedby
the physiological function, interacting pathways, and tissue localiza-
tion relevant to liver pathobiology. For short-listing, candidates were
prioritized if reported as having either a causal association or a con-
sequential relevance to liver disease following review against the cur-
rent literature. To permit a ‘positive control approach’, traditional
biomarkers ALT, AST and ALP, as well as previously identified bio-
markers CK18 and GLDH12,54 were included.

Statistical analysis
Discovery data analysis: TMT-bridge-normalized discovery data were
transformed to log-scale using the “normalizeVSN” function of
limma55. Differential expression analysis was then performed with
limma using different pairwise comparisons (robust fit), after con-
trolling for subject as a random effect using the “duplicateCorrelation”
function and compensating for TMT channels using the “vooma-
ByGroup” function. We considered Benjamini-Hochberg -adjusted
p-values below 0.1 to be significant.

AUC-ROC and their confidence interval were calculated for each
biomarker to evaluate the classification power and global predictivity
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of each biomarker in confirmatory and replication cohorts between
DO versus HV, DO versus NDO, NDO versus HV, and DF patients who
subsequently recovered (normalization of liver enzymes) (True
recovery) versus those who did not (Not recovery) respectively (Sup-
plementary Table 6). An AUC of 1.0 represents perfectly separable
cases and controls (e.g. DO versus HV), while an AUC of 0.5 represents
predictability no better than random guessing. Variable importance
scores for candidate biomarkers were based on 500 bootstrapping. All
analyses were conducted using R version 4.0.2.

To generate liver zone gene sets, we first obtained all significantly
differentially expressed genes in hepatic cell cluster14, filtered for fea-
tures with an average log2 fold difference >0, and then renamed
clusters with liver zones as described by authors. Gene Set Enrichment
Analysis was then performed using the fgsea package in R, with gene
ranks from discovery data comparisons. We considered Benjamini-
Hochberg-adjusted p-values below 0.1 to be significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The discovery proteomics data generated in this study have been
deposited in the MassIVE under massive.ucsd.edu with project iden-
tifier MSV000089782 [https://doi.org/10.25345/C5R785S9H]. Uniprot
protein database (https://www.uniprot.org) was used for protein
identification from the mass spectrometry data. Targeted proteomics
data is available through the Panorama repository via https://
panoramaweb.org/DILI_Biomarkers.url and at the ProteomeXchange
Consortium with following identifier PXD034882. All the clinical data
used in the study are subject to a data sharing agreement with the
originating institutions, available upon request to the corresponding
authors, who will respond within 50 working days to provide contact
details for contracting. Clinical data are available for researchpurposes
only, for specified projects with reasonable security practices and
systems in place to ensure confidentiality and data may not be shared
with third parties. STARD checklist is provided in Supplementary
Table 9. Source data are provided with this paper.

Code availability
Code used to analyze the data in this study is available for use with an
individual organization with adequate security measures to ensure
confidentiality following provision of appropriate code sharing
agreement with Pfizer. This can be arranged upon request to the cor-
responding authors, who will respond within 50 working days.
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