100 research outputs found

    Riparian buffers act as microclimatic refugia in oil palm landscapes

    Get PDF
    1. There is growing interest in the ecological value of set-aside habitats around rivers in tropical agriculture. These riparian buffers typically comprise forest or other non production habitat, and are established to maintain water quality and hydrological processes, whilst also supporting biodiversity, ecosystem function and landscape connectivity. 2. We investigated the capacity for riparian buffers to act as microclimatic refugia by combining field-based measurements of temperature, humidity, and dung beetle communities with remotely-sensed data from LiDAR across an oil palm dominated landscape in Borneo. 3. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm plantations, with wider buffers characterised by conditions comparable to riparian sites in continuous logged forest. 4. High vegetation quality and topographic sheltering were strongly associated with cooler and more humid microclimates in riparian habitats across the landscape. Variance in beetle diversity was also predicted by both proximity-to-edge and microclimatic conditions within the buffer, suggesting that narrow buffers amplify the negative impacts that high temperatures have on biodiversity. 5. Synthesis and applications. Widely-legislated riparian buffer widths of 20-30 m each side of a river may provide drier and less humid microclimatic conditions than continuous forest. Adopting wider buffers and maintaining high vegetation quality will ensure set-asides established for hydrological reasons bring co-benefits for terrestrial biodiversity, both now, and in the face of anthropogenic climate change.This work was funded by the Natural Environmental Research Council (NERC) through the Human Modified Tropical Forests programme (NE/K016261/1; NE/K016377/1), as well as the Newton--Ungku Omar Fund via the British Council and Malaysian Industry -Government Group for High Technology (216433953). NERC also funded the PhD studentship for JW (NE/L002485/1) and research fellowship of TJ (NE/S01537X/1)

    Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy

    Get PDF
    Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms

    Effects of Replanting and Retention of Mature Oil Palm Riparian Buffers on Ecosystem Functioning in Oil Palm Plantations

    Get PDF
    Oil palm plantations are a major agricultural land use in Southeast Asia. In the coming decades large areas of mature oil palm will be cleared and replanted. To inform more sustainable long-term production in this globally important crop, it is crucial we understand how replanting impacts ecosystem functions and services. We investigated whether several production-relevant ecosystems functions (dung removal, soil mesofauna feeding activity, herbivory, herbivore predation, and seed predation), and the simultaneous delivery of all functions (ecosystem multifunctionality), vary between recently-replanted oil palm (1–4 years) and mature oil palm (23–30 years) areas. Following new in-country and Roundtable on Sustainable Palm Oil (RSPO) guidelines, riparian buffers of mature oil palm, in which subsequent natural regrowth is allowed, are being preserved during the replanting cycle in plantations that lack natural forest reserves. We investigated whether or not mature oil palm riparian buffers maintain levels of ecosystem functioning beneficial for palm oil production. Only one function (herbivory) differed between mature and replanted areas, with higher levels of herbivory found in recently replanted oil palm. There was no difference in ecosystem multifunctionality between mature and recently-replanted oil palm. Mature oil palm riparian buffers were found to be valuable for maintaining lower levels of herbivory than recently-replanted oil palm. However, no other functions, nor ecosystem multifunctionality, differed between the mature oil palm riparian buffers and recently-replanted oil palm. The results of this study suggest that replanting has limited impacts on the ecosystem functions we considered. Furthermore, they suggest mature oil palm riparian buffers do not have negative impacts on production-relevant ecosystem functions in oil palm landscapes.This project was made possible through funding from SMARTRI; the UK Natural Environment Research Council (NERC), the Heron-Allen Travel Scholarship, Lady Margaret Hall; and the University of Oxford Zoology Department. ES was funded under UK Natural Environment Research Council grant (NE/K016407/1). The BEFTA Programme was funded by The Isaac Newton Trust Cambridge, Golden-Agri Resources, and the UK Natural Environment Research Council grant (NE/P00458X/1)

    Riparian buffers can help mitigate biodiversity declines in oil palm agriculture

    Get PDF
    Agricultural expansion drives biodiversity decline in forested tropical regions. Consequently, it is important to understand the conservation value of remnant forest in production landscapes. In a tropical landscape dominated by oil palm we characterized faunal communities across eight taxa occurring within riparian forest buffers, which are legally protected alongside rivers, and compared them to nearby recovering logged forest. Buffer width was the main predictor of species richness and abundance, with widths of 40-100 m on each side of the river supporting broadly equivalent levels of biodiversity to logged forest. However, width responses varied markedly among taxa, and buffers often lacked forest-dependent species. Much wider buffers than are currently mandated are needed to safeguard most species. The largest biodiversity gains are achieved by increasing relatively narrow buffers. To provide optimal conservation outcomes in tropical production landscapes we encourage policymakers to prescribe width requirements for key taxa and different landscape contexts.Newton-Ungku Omar Fund (grants 216433953, 537134717) – delivered by the British Council and funded by the UK Department for Business, Energy and Industrial Strategy and the Malaysian Industry-Government Group for High Technology – as well as the UK Natural Environment Research Council (NE/K016407/1, NE/K016261/1; https://lombok.nerc-hmtf.info/). MJS was supported by a Research Leadership Award from the Leverhulme Trust

    Mitochondrial sulfide promotes life span and health span through distinct mechanisms in developing versus adult treated Caenorhabditis elegans

    Get PDF
    Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH S) administered across the adult life course are unknown. Using a aging model, we compared untargeted H S (NaGYY4137, 100 µM and 100 nM) and mtH S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH S donor-mediated health span. Developmentally administered mtH S (100 nM) improved life/health span vs. equivalent untargeted H S doses. mtH S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H S metabolism enzymes and FoxO/ prevented the positive health span effects of mtH S, whereas DCAF11/ - Nrf2/ oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH S treatments. Adult mtH S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the / transcription factor circuit. H S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH S doses required for health span extension, combined with efficacy in adult animals, suggest mtH S is a potential healthy aging therapeutic

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore