11 research outputs found

    Computational and experimental studies into the hydrodynamic operation conditions of container filters for ion-selective treatment

    No full text
    Formation of radioactive waste (RW) is specific to the NPP operation. Liquid radioactive waste (LRW) forms in the process of the reactor plant operation, and in decontamination of equipment, rooms and overalls. The radionuclides found mostly in vat residues are 134, 137 Cs in the form of ions and 60Co and 54Mn isotopes in the form of chelates including substances used for equipment decontamination. Among the well-known conditioning techniques, selective sorption provides for the greatest reduction of LRW amounts. The efficiency of using the amount of the filter material can be increased by supplying the treated medium simultaneously to several sorbent layers. The paper presents computer simulation results for three proposed options of improved container filter designs for ion-selective treatment differing in the ways used both to separate the treated water flows and to deliver these to the sorbent layers. The improved efficiency of the sorption processes in the proposed designs was estimated using computer simulation in SolidWorks Flow Simulation. Three sorbent grades from NPP Eksorb were used for the study. A series of experimental studies of the flow through the sorbent layer was undertaken to determine the hydraulic resistance of the studied samples. The obtained experimental data was added to the Solidworks Flow Simulation engineering database for simulation of the earlier presented designs. Representative parameters of the flow inside of container filters were obtained as a result of the simulation

    Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome

    No full text
    International audienceAmicoumacin A is an antibiotic that was recently shown to target bacterial ribosomes. It affects translocation and provides an additional contact interface between the ribosomal RNA and mRNA. The binding site of amicoumacin A is formed by universally conserved nucleotides of rRNA. In this work, we showed that amicoumacin A inhibits translation in yeast and mammalian systems by affecting translation elongation. We determined the structure of the amicoumacin A complex with yeast ribosomes at a resolution of 3.1 Å. Toxicity measurement demonstrated that human cancer cell lines are more susceptible to the inhibition by this compound as compared to non-cancerous ones. This might be used as a starting point to develop amicoumacin A derivatives with clinical value

    Effect of Sn for the dislocation-free SiSn nanostructure formation on the vapor-liquid-crystal mechanism

    Get PDF
    Structures with tin-rich island arrays on silicon pedestals were obtained by molecular beam epitaxy using Sn as a catalyst for the growth of nanostructures. A tin island array was used further to study the growth of nanostructures in the process of Si deposition on the surface with Sn islands. It was established that, during the growth on the vapor-liquid-crystal mechanism, tin-rich islands are formed on faceted pedestals. A nanostructured cellular surface was formed between the islands on pedestals. The analysis of the elemental composition of the obtained nanostructures was performed by the methods of energy dispersive X-ray spectroscopy and photoelectron spectroscopy. It is shown that tin-rich islands can contain up to 90% tin, whereas the pedestal consists of silicon. The transmission electron microscopy data demonstrated a distinct crystal structure of tin-rich islands and silicon pedestals, as well as the absence of dislocations in the structures with island arrays on the faceted pedestals. The facet tilt angle is 19° and corresponds to the (311) plane. The photoluminescence signal was observed with a photoluminescence maximum near the wavelength of 1.55 μm

    Self-heating hotspots in superconducting nanowires cooled by phonon black-body radiation

    No full text
    Controlling thermal transport is important for a range of devices and technologies, from phase change memories to next-generation electronics. This is especially true in nano-scale devices where thermal transport is altered by the influence of surfaces and changes in dimensionality. In superconducting nanowire single-photon detectors, the thermal boundary conductance between the nanowire and the substrate it is fabricated on influences all of the performance metrics that make these detectors attractive for applications. This includes the maximum count rate, latency, jitter, and quantum efficiency. Despite its importance, the study of thermal boundary conductance in superconducting nanowire devices has not been done systematically, primarily due to the lack of a straightforward characterization method. Here, we show that simple electrical measurements can be used to estimate the thermal boundary conductance between nanowires and substrates and that these measurements agree with acoustic mismatch theory across a variety of substrates. Numerical simulations allow us to refine our understanding, however, open questions remain. This work should enable thermal engineering in superconducting nanowire electronics and cryogenic detectors for improved device performance. [Abstract copyright: © 2022. The Author(s).

    Biological evaluation and spectral characterization of novel tetracenomycin X congener

    No full text
    The aromatic polyketide tetracenomycin X (TcmX) was recently found to be a potent inhibitor of protein synthesis, whose binding site is located in a unique locus within the tunnel of the large ribosomal subunit. The distinct mode of action makes this relatively narrow class of macrolides promising for drug development, in our quest to prevent the spread of drug resistant pathogens. Here we report the isolation and structure elucidation of novel natural tetracenomycin X congener – 6-hydroxytetraceonomycin X (6-OH-TcmX). In contrast to TcmX, 6-OH-TcmX exhibited lower antimicrobial and cytotoxic activity, but comparable in vitro protein synthesis inhibition ability. A survey on spectral properties of tetracenomycins showed profound differences in both UV-absorption and fluorescence spectra of TcmX and 6-OH-TcmX, suggesting the significant influence of 6-hydroxylation on tetracenomycin chromophore. Nonetheless, characteristic spectral properties of tetracenomycins make them suitable candidates as a foundation for semi-synthetic drug development (e.g., for targeted delivery, theranostics or cell imaging)

    Conjugates of Chloramphenicol Amine and Berberine as Antimicrobial Agents

    No full text
    In order to obtain antimicrobial compounds with improved properties, new conjugates comprising two different biologically active agents within a single chimeric molecule based on chloramphenicol (CHL) and a hydrophobic cation were synthesized and studied. Chloramphenicol amine (CAM), derived from the ribosome-targeting antibiotic CHL, and the plant isoquinoline alkaloid berberine (BER) are connected by alkyl linkers of different lengths in structures of these conjugates. Using competition binding, double reporter system, and toeprinting assays, we showed that synthesized CAM-Cn-BER compounds bound to the bacterial ribosome and inhibited protein synthesis like the parent CHL. The mechanism of action of CAM-C5-BER and CAM-C8-BER on the process of bacterial translations was similar to CHL. Experiments with bacteria demonstrated that CAM-Cn-BERs suppressed the growth of laboratory strains of CHL and macrolides-resistant bacteria. CAM-C8-BER acted against mycobacteria and more selectively inhibited the growth of Gram-positive bacteria than the parent CHL and the berberine derivative lacking the CAM moiety (CH3-C8-BER). Using a potential-sensitive fluorescent probe, we found that CAM-C8-BER significantly reduced the membrane potential in B. subtilis cells. Crystal violet assays were used to demonstrate the absence of induction of biofilm formation under the action of CAM-C8-BER on E. coli bacteria. Thus, we showed that CAM-C8-BER could act both on the ribosome and on the cell membrane of bacteria, with the alkylated berberine fragment of the compound making a significant contribution to the inhibitory effect on bacterial growth. Moreover, we showed that CAM-Cn-BERs did not inhibit eukaryotic translation in vitro and were non-toxic for eukaryotic cells

    Triphenilphosphonium Analogs of Chloramphenicol as Dual-Acting Antimicrobial and Antiproliferating Agents

    No full text
    In the current work, in continuation of our recent research, we synthesized and studied new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of different lengths. Using various biochemical assays, we showed that these CAM-Cn-TPP compounds bind to the bacterial ribosome, inhibit protein synthesis in vitro and in vivo in a way similar to that of the parent CHL, and significantly reduce membrane potential. Similar to CAM-C4-TPP, the mode of action of CAM-C10-TPP and CAM-C14-TPP in bacterial ribosomes differs from that of CHL. By simulating the dynamics of CAM-Cn-TPP complexes with bacterial ribosomes, we proposed a possible explanation for the specificity of the action of these analogs in the translation process. CAM-C10-TPP and CAM-C14-TPP more strongly inhibit the growth of the Gram-positive bacteria, as compared to CHL, and suppress some CHL-resistant bacterial strains. Thus, we have shown that TPP derivatives of CHL are dual-acting compounds targeting both the ribosomes and cellular membranes of bacteria. The TPP fragment of CAM-Cn-TPP compounds has an inhibitory effect on bacteria. Moreover, since the mitochondria of eukaryotic cells possess qualities similar to those of their prokaryotic ancestors, we demonstrate the possibility of targeting chemoresistant cancer cells with these compounds
    corecore