759 research outputs found

    A History of the development of deep mine production in Crawford County and the factors that have influenced it

    Get PDF
    On May 12, 1887, The Pittsburg Headlight, in eulogizing the future possibilities of Crawford County, printed the following: In the new field of manufacturing no state can claim the superior advantages that belong to Kansas. Geographically, she is in the center and in point of railroad access and outlet, she is peer of them all. Her natural resources of coal and mineral wealth are matters of renown and for that reason her destiny is that of the greatest manufacturing empire west of the Mississippi. The richest district of all this wealth is Crawford County and the brightest future of all cities is Pittsburg. Nearly one half century has passed, and as one rides over the highways of Crawford County and sees skeleton remains of mines that once provided employment for thousands of miners; as he passes through deserted mining camps that are fast assuming the appearance of the ghost towns of the west; as he stops to see mammoth frankensteins destroying the virgin soil of once prosperous farm lands, in order that the last semblance of coal might be stripped from the breast of Mother Nature, a dim understanding of the cruel blow that fate has dealt Crawford County begins to dawn slowly. Crawford County, once the playground of the Cherokee Indians, came into being on April 13, 1867, by act of the state legislature of Kansas. Prior to that time, the entire county along with Cherokee County and a part of the Bourbon County, constituted the territory known as the Cherokee Neutral lands

    Protein kinase activity is associated with CD63 in melanoma cells

    Get PDF
    BACKGROUND: The tetraspan protein CD63, originally described as a stage-specific melanoma antigen but also present in a number of normal cells, regulates melanoma cell growth in nude mice, motility in serum containing media, and adhesion to several extracellular matrix proteins. CD63 has been reported to associate with β1 and β2 integrins, but the mechanism of signal transduction by CD63 is not clear. This study examined whether CD63 is associated with protein kinase and can transmit signals in melanoma cells. METHODS: Immunoprecipitation and radiolabeling were used to test for association of protein kinase activity with CD63. Adhesion of cells to monoclonal antibodies immobilized to microtiter plates was used to examine the ability of CD63 to transmit signals. RESULTS: CD63 was capable of transmitting a signal in melanoma cells that required extracellular calcium. In the absence of extracellular calcium at the time of binding to the CD63 mAb, the cell was no longer responsive to stimulation by CD63. Immunoprecipitation studies demonstrated protein kinase activity associated with CD63, and phosphoamino acid analysis revealed that most of this protein kinase activity was due to serine kinase activity. CONCLUSION: The current study suggests that serine protein kinase activity associated with CD63 may play a role in signaling by CD63 in melanoma cells

    Identification of heterogeneity among soft tissue sarcomas by gene expression profiles from different tumors

    Get PDF
    The heterogeneity that soft tissue sarcomas (STS) exhibit in their clinical behavior, even within histological subtypes, complicates patient care. Histological appearance is determined by gene expression. Morphologic features are generally good predictors of biologic behavior, however, metastatic propensity, tumor growth, and response to chemotherapy may be determined by gene expression patterns that do not correlate well with morphology. One approach to identify heterogeneity is to search for genetic markers that correlate with differences in tumor behavior. Alternatively, subsets may be identified based on gene expression patterns alone, independent of knowledge of clinical outcome. We have reported gene expression patterns that distinguish two subgroups of clear cell renal carcinoma (ccRCC), and other gene expression patterns that distinguish heterogeneity of serous ovarian carcinoma (OVCA) and aggressive fibromatosis (AF). In this study, gene expression in 53 samples of STS and AF [including 16 malignant fibrous histiocytoma (MFH), 9 leiomyosarcoma, 12 liposarcoma, 4 synovial sarcoma, and 12 samples of AF] was determined at Gene Logic Inc. (Gaithersburg, MD) using Affymetrix GeneChip® U_133 arrays containing approximately 40,000 genes/ESTs. Gene expression analysis was performed with the Gene Logic Genesis Enterprise System® Software and Expressionist software. Hierarchical clustering of the STS using our three previously reported gene sets, each generated subgroups within the STS that for some subtypes correlated with histology, and also suggested the existence of subsets of MFH. All three gene sets also recognized the same two subsets of the fibromatosis samples that we had found in our earlier study of AF. These results suggest that these subgroups may have biological significance, and that these gene sets may be useful for sub-classification of STS. In addition, several genes that are targets of some anti-tumor drugs were found to be differentially expressed in particular subsets of STS

    The subcellular distribution of myeloid-related protein 8 (MRP8) and MRP14 in human neutrophils

    Get PDF
    BACKGROUND: Myeloid-related protein 8 (MRP8) and MRP14 are S100 family calcium binding proteins that form a heterodimer known as calprotectin or MRP8/14 that is present in the cytosol of neutrophils and monocytes. MRP8/14 becomes associated with endothelium at sites of monocyte and neutrophil adhesion and transmigration and induces a thrombogenic and inflammatory response by increasing the endothelial transcription of proinflamatory chemokines and adhesion molecules. The distribution of MRP8/MRP14 among neutrophil granules and plasma membranes is unclear and was investigated to better understand the role of this molecule in acute inflammation. STUDY DESIGN: Three monoclonal antibodies specific for MRP8 and MRP14 were characterized and used in immunoblotting assays of neutrophil whole cell extracts, and isolated plasma membranes, primary granules, secondary granules and cytosol. RESULTS: MRP8 and MRP14 were detected in neutrophil cytosol, plasma membrane, primary granule and secondary granule fractions. MRP8/14 demonstrated a calcium-dependent adherence to plasma membranes and primary granules and could be removed by washing with EGTA in a high ionic strength buffer. In contrast, MRP8/14 was found within the contents of the secondary granules. Activated neutrophils released secondary granules and MRP8/14. CONCLUSION: MRP8/14 is located in neutrophil cytosol and secondary granule fractions and is loosely associated with plasma membranes. MRP8/14 released with secondary granules by activated neutrophils likely binds to endothelium and plays an important role in acute inflammation

    Laminin and Heparan Sulfate Proteoglycan Mediate Epithelial Cell Polarization in Organotypic Cultures of Embryonic Lung Cells: Evidence Implicating Involvement of the Inner Globular Region of Laminin β 1 Chain and the Heparan Sulfate Groups of Heparan Sulfate Proteoglycan

    Get PDF
    AbstractThe extracellular matrix and in particular the basement membrane (BM) play an important role in the induction of organotypic rearrangement of cells in culture. This process involves cell aggregation, sorting into epithelial and mesenchymal components, epithelial cell polarization, and lumen formation. In this study, a combination of laminin (LM) and heparan sulfate proteoglycan (HSPG), two major BM constituents, induced organotypic rearrangement of embryonic mouse lung cells. In the absence of LM/HSPG supplementation, the cells sorted into epithelial and mesenchymal compartments but epithelial cell polarization and lumen formation did not occur. Neither LM nor HSPG alone could trigger this process. Synthetic peptide F-9, representing an amino acid sequence from the inner globular region of the laminin β1 chain (RYVVLPRPVCFEKGMNYTVR) induced organotypic cell rearrangement when substituted for LM. Exogenous LM as well as peptide F-9 were localized at the epithelial–mesenchymal interface of organotypic cultures, where a BM-like structure is formedde novo.Organotypic cell rearrangement was blocked by heparin, heparan sulfate, or antibodies against peptide F-9. Binding assays indicated that peptide F-9 interacts with HSPG but not with LM or type IV collagen. Preincubation of embryonic lung cells with peptide F-9 resulted in a significant increase in cell attachment to HSPG but not to other major BM constituents. These findings suggest that the interaction between LM and BM HSPG is critical for the development of epithelial cell polarization and lumen formation. This interaction occurs at the epithelial–mesenchymal interface and is mediated by a site in the LM molecule represented by peptide F-9 and the heparan sulfate groups of HSPG

    Interactions between Germ Cells and Extracellular Matrix Glycoproteins during Migration and Gonad Assembly in the Mouse Embryo

    Get PDF
    Cells are known to bind to individual extracellular matrix glycoproteins in a complex and poorly understood way. Overall strength of adhesion is thought to be mediated by a combinatorial mechanism, involving adhesion of a cell to a variety of binding sites on the target glycoproteins. During migration in embryos, cells must alter their overall adhesiveness to the substrate to allow locomotion. The mechanism by which this is accomplished is not well understood. During early development, the cells destined to form the gametes, the primordial germ cells (PGCs), migrate from the developing hind gut to the site where the gonad will form. We have used whole-mount immunocytochemistry to study the changing distribution of three extracellular matrix glycoproteins, collagen IV, fibronectin, and laminin, during PGC migration and correlated this with quantitative assays of adhesiveness of PGCs to each of these. We show that PGCs change their strength of adhesion to each glycoprotein differentially during these stages. Furthermore, we show that PGCs interact with a discrete tract of laminin at the end of migration. Closer analysis of the adhesion of PGCs to laminin revealed that PGCs adhere particularly strongly to the E3 domain of laminin, and blocking experiments in vitro suggest that they adhere to this domain using a cell surface proteoglycan

    Quantitative proteomic analysis by iTRAQ® for the identification of candidate biomarkers in ovarian cancer serum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ<sup>®</sup>.</p> <p>Results</p> <p>Medium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ<sup>® </sup>to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified.</p> <p>Conclusions</p> <p>This study provides the first analysis of immunodepleted serum in combination with iTRAQ<sup>® </sup>to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.</p

    Giant cell tumor of the uterus: case report and response to chemotherapy

    Get PDF
    BACKGROUND: Giant cell tumor (GCT) is usually a benign but locally aggressive primary bone neoplasm in which monocytic macrophage/osteoclast precursor cells and multinucleated osteoclast-like giant cells infiltrate the tumor. The etiology of GCT is unknown, however the tumor cells of GCT have been reported to produce chemoattractants that can attract osteoclasts and osteoclast precursors. Rarely, GCT can originate at extraosseous sites. More rarely, GCT may exhibit a much more aggressive phenotype. The role of chemotherapy in metastatic GCT is not well defined. CASE PRESENTATION: We report a case of an aggressive GCT of the uterus with rapidly growing lung metastases, and its response to chemotherapy with pegylated-liposomal doxorubicin, ifosfamide, and bevacizumab, along with a review of the literature. CONCLUSION: Aggressive metastasizing GCT may arise in the uterus, and may respond to combination chemotherapy

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin
    corecore