5 research outputs found

    Hradec Králové total ozone assimilated time series from 1961 to 2010

    No full text
    Homogenized data series of total ozone measurements taken by the regularly and well calibrated Dobson and Brewer spectrophotometers at Hradec Králové (Czech) and the data from the re-analyses ERA-40 and ERA-Interim were assimilated and combined to investigate differences between the particular data sets over Central Europe, the NH mid-latitudes. The Dobson-to-Brewer transfer function and the algorithm for approximation of the data from the re-analyses were developed, tested and applied for creation of instrumentally consistent and completed total ozone data series of the 50-year period 1961-2010 of observations. The assimilation has reduced the well-known seasonal differences between Dobson and Brewer data below the 1% calibration limit of the spectrophotometers. Incorporation of the ERA-40 and ERA-Interim total ozone data on days with missing measurements significantly improved completeness and reliability of the data series mainly in the first two decades of the period concerned. Consistent behaviour of the original and assimilated data sets was found in the pre-ozone-hole period (1961-1985). In the post-Pinatubo (1994-2010) era the data series show seasonal differences that can introduce uncertainty in estimation of ozone recovery mainly in the winter-spring season when the effect of the Montreal Protocol and its Amendments is expected. All the data sets confirm substantial depletion of ozone also in the summer months that gives rise to the question about its origin. The assimilated and completed data series of total ozone will be further analyzed to quantify chemical ozone losses and contribution of natural atmospheric processes to the ozone depletion over the region. This case study points out importance of selection and evaluation of the quality and consistency of the input data sets used in estimation of long-term ozone changes including recovery of the ozone layer over the selected areas

    Validation of 10-year 1 SAO OMI ozone profile (PROFOZ) product using ozonesonde observations [Discussion paper]

    No full text
    It is essential to understand the data quality of 10+ year OMI ozone product and impacts of the “Row Anomaly (RA)”. We validate the OMI ozone-profile (PROFOZ) product from Oct. 2004 to Dec. 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability

    Validation of 10-year SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations

    Get PDF
    We validate the Ozone Monitoring Instrument (OMI) ozone-profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI Row anomaly (RA) on the retrieval by dividing the data set into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004-2008) and post-RA (2009-2014). The retrieval shows good agreement with ozonesondes in the tropics and mid-latitudes and for pressure ~50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC) are within 2% with SDs of ~50 hPa. The SOC MBs increase up to 3% with SDs as great as 6% and the TOC SDs increase up to 30%. The comparison generally degrades at larger solarzenith angles (SZA) due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the mid-latitude winter. Agreement also degrades with increasing cloudiness for pressure > ~100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and mid-latitudes, the post-RA comparison is considerably worse with larger SDs reaching 2% in the stratosphere and 8% in the troposphere and up to 6% in TOC. There are systematic differences that vary with latitude compared to the pre-RA comparison. The retrieval comparison demonstrates good long-term stability during the pre-RA period, but exhibits a statistically significant trend of 0.14-0.7%/year for pressure < ~ 80 hPa, 0.7 DU/year in SOC and -0.33 DU/year in TOC during the post-RA period. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability and reduce the latitude/season/SZA and cross-track dependence of retrieval quality.Astronom

    Validation of 10-year 1 SAO OMI Ozone Profile (PROFOZ) Product Using Ozonesonde Observations

    No full text
    We validate the Ozone Monitoring Instrument (OMI) ozone-profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI Row anomaly (RA) on the retrieval by dividing the data set into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004-2008) and post-RA (2009-2014). The retrieval shows good agreement with ozonesondes in the tropics and mid-latitudes and for pressure ~50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC) are within 2% with SDs of ~50 hPa. The SOC MBs increase up to 3% with SDs as great as 6% and the TOC SDs increase up to 30%. The comparison generally degrades at larger solar zenith angles (SZA) due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the mid-latitude winter. Agreement also degrades with increasing cloudiness for pressure > ~100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and mid-latitudes, the post-RA comparison is considerably worse with larger SDs reaching 2% in the stratosphere and 8% in the troposphere and up to 6% in TOC. There are systematic differences that vary with latitude compared to the pre-RA comparison. The retrieval comparison demonstrates good long-term stability during the pre-RA period, but exhibits a statistically significant trend of 0.14-0.7%/year for pressure < ~ 80 hPa, 0.7 DU/year in SOC and -0.33 DU/year in TOC during the post-RA period. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability and reduce the latitude/season/SZA and cross-track dependence of retrieval quality
    corecore