6 research outputs found

    Modélisation de graphes et analyse du réseau cérébro-vasculaire du cerveau

    No full text
    La vascularisation cĂ©rĂ©brale est un vaste rĂ©seau visant Ă  distribuer de maniĂšre adĂ©quate les nutriments et l'oxygĂšne nĂ©cessaires Ă  l'Ă©nergie. Son fonctionnement est Ă©troitement liĂ© Ă  l'activitĂ© des neurones qui le peuplent. Cet Ă©quilibre dĂ©licat fait intervenir de multiples mĂ©canismes, notamment des interactions de couplage neurovasculaire. Il est supposĂ© que des dĂ©sĂ©quilibres neurovasculaires sont impliquĂ©s dans la plupart des maladies cĂ©rĂ©brales et vasculaires, telles que les maladies neurodĂ©gĂ©nĂ©ratives. Les mĂ©canismes prĂ©cis qui contrĂŽlent la plasticitĂ© neuro-vasculaire, etc. restent largement mĂ©connus. Cependant, Ă©tudier le rĂŽle que joue la vascularisation dans l'ensemble des systĂšmes cognitifs reprĂ©sente un vĂ©ritable dĂ©fi technique car trĂšs peu de ressources sont disponibles. Nous avons donc dĂ©veloppĂ© une pipeline permettant d’imager la vascularisation cĂ©rĂ©brale entiĂšre, afin de caractĂ©riser l'Ă©tat et l'Ă©volution du systĂšme vasculaire dans diffĂ©rentes conditions pathologiques (Kirst, Skriabine, Vieites-Prado et al 2020). Nous proposons Ă©galement de suivre l'Ă©volution du rĂ©seau vasculaire pendant le dĂ©veloppement. Nous fournissons des ressources sous forme d'atlas et d'outils informatiques pour dĂ©bloquer la recherche sur le dĂ©veloppement cĂ©rĂ©bral chez les souris. Cela conduit Ă  la caractĂ©risation complĂšte du systĂšme vasculaire : de fortes disparitĂ©s ont Ă©tĂ© observĂ©es tant en termes de densitĂ©s que de topologie. L’observation d’un remaniement plastique vasculaire aprĂšs un accident vasculaire cĂ©rĂ©bral, ainsi la dĂ©gradation vasculaire chez des souris sourdes congĂ©nitales apportent ainsi des preuves solides de la corrĂ©lation entre l'activitĂ© et le stress neuronal et la topologie vasculaire. Pour approfondir l'Ă©tude des hĂ©tĂ©rogĂ©nĂ©itĂ©s vasculaires, nous avons examinĂ© leur Ă©volution au cours du dĂ©veloppement : le dĂ©veloppement vasculaire se produit par vagues dont la longueur et l'intensitĂ© dĂ©pendent de la rĂ©gion cĂ©rĂ©brale. Les systĂšmes somatosensoriels (rĂ©gions corticales et thalamiques) semblent se dĂ©velopper conjointement, et l’on peut Ă©mettre l'hypothĂšse de l' existence d’un lien entre la longueur de la fenĂȘtre de dĂ©veloppement et les hĂ©tĂ©rogĂ©nĂ©itĂ©s d'orientation/densitĂ©. Une perturbation prĂ©coce du systĂšme (par la privation sensorielle par exemple) entraĂźne une modification de la topologie vasculaire chez l’adulte, suggĂ©rant une corrĂ©lation entre l'activitĂ© neuronale au cours du dĂ©veloppement et une diminution de la densitĂ© vasculaire. La diminution de l'activitĂ© neuronale impacte Ă©galement le vieillissement, en accĂ©lĂ©rant la dĂ©gradation vasculaire, non seulement dans le cortex, mais aussi dans les zones thalamiques liĂ©es Ă  la mĂ©moire et Ă  la cognition, et reconnues pour ĂȘtre impliquĂ©es chez l'homme dans les troubles neurologiques liĂ©s Ă  l'Ăąge.The cerebral vascularization is a vast network aimed at adequately distributing the nutrients and oxygen necessary for energy. Its functioning is closely linked to the activity of the neurons that populate it. This delicate balance involves multiple mechanisms, including neurovascular coupling interactions. It is assumed that neurovascular imbalances are involved in most brain and vascular diseases, such as neurodegenerative diseases. The precise mechanisms that control neurovascular plasticity, etc. remain largely unknown. However, studying the role that the vasculature plays in all cognitive systems is a real technical challenge because very few resources are available. We have therefore developed a pipeline to image the vasculature of whole organs in a reasonable time frame in order to characterize the state and evolution of the vascular system under different pathological conditions (Kirst, Skriabine, Vieites-Prado et al 2020). We also propose to monitor the evolution of the vascular network during development. We provide resources in the form of atlases and computational tools to unlock research on brain development in mice. This leads to the complete characterization of the vascular system: strong disparities were observed in both densities and topology. In particular in the cortical areas, these differences are sufficient to characterize the function (integrative or somato-sensory) of the different cortical regions. The observation of vascular plastic remodeling after stroke, as well as vascular degradation in congenitally deaf mice thus provide strong evidence for the correlation between neuronal activity and stress and vascular topology. To further investigate vascular heterogeneities, we examined their evolution during development: Vascular development occurs in waves whose length and intensity depend on the brain region. The somatosensory systems (cortical and thalamic regions) seem to develop together, and it can be hypothesized that there is a link between the length of the developmental window and the orientation/density heterogeneities. Early disruption of the system (e.g., by sensory deprivation) leads to a change in vascular topology in the adult, suggesting that decreased neuronal activity during development leads to decreased vascular density in the affected regions. In adulthood, such a loss of vessels has not been observed after a decrease in neuronal activity. However, a decrease in neuronal activity shows an impact during long-term aging in mice, by accelerating vascular degradation, not only in somatosensory areas but also in thalamic areas related to memory and cognition, and known to be involved in age-related neurological disorders in humans

    Modélisation de graphes et analyse du réseau cérébro-vasculaire du cerveau

    No full text
    The cerebral vascularization is a vast network aimed at adequately distributing the nutrients and oxygen necessary for energy. Its functioning is closely linked to the activity of the neurons that populate it. This delicate balance involves multiple mechanisms, including neurovascular coupling interactions. It is assumed that neurovascular imbalances are involved in most brain and vascular diseases, such as neurodegenerative diseases. The precise mechanisms that control neurovascular plasticity, etc. remain largely unknown. However, studying the role that the vasculature plays in all cognitive systems is a real technical challenge because very few resources are available. We have therefore developed a pipeline to image the vasculature of whole organs in a reasonable time frame in order to characterize the state and evolution of the vascular system under different pathological conditions (Kirst, Skriabine, Vieites-Prado et al 2020). We also propose to monitor the evolution of the vascular network during development. We provide resources in the form of atlases and computational tools to unlock research on brain development in mice. This leads to the complete characterization of the vascular system: strong disparities were observed in both densities and topology. In particular in the cortical areas, these differences are sufficient to characterize the function (integrative or somato-sensory) of the different cortical regions. The observation of vascular plastic remodeling after stroke, as well as vascular degradation in congenitally deaf mice thus provide strong evidence for the correlation between neuronal activity and stress and vascular topology. To further investigate vascular heterogeneities, we examined their evolution during development: Vascular development occurs in waves whose length and intensity depend on the brain region. The somatosensory systems (cortical and thalamic regions) seem to develop together, and it can be hypothesized that there is a link between the length of the developmental window and the orientation/density heterogeneities. Early disruption of the system (e.g., by sensory deprivation) leads to a change in vascular topology in the adult, suggesting that decreased neuronal activity during development leads to decreased vascular density in the affected regions. In adulthood, such a loss of vessels has not been observed after a decrease in neuronal activity. However, a decrease in neuronal activity shows an impact during long-term aging in mice, by accelerating vascular degradation, not only in somatosensory areas but also in thalamic areas related to memory and cognition, and known to be involved in age-related neurological disorders in humans.La vascularisation cĂ©rĂ©brale est un vaste rĂ©seau visant Ă  distribuer de maniĂšre adĂ©quate les nutriments et l'oxygĂšne nĂ©cessaires Ă  l'Ă©nergie. Son fonctionnement est Ă©troitement liĂ© Ă  l'activitĂ© des neurones qui le peuplent. Cet Ă©quilibre dĂ©licat fait intervenir de multiples mĂ©canismes, notamment des interactions de couplage neurovasculaire. Il est supposĂ© que des dĂ©sĂ©quilibres neurovasculaires sont impliquĂ©s dans la plupart des maladies cĂ©rĂ©brales et vasculaires, telles que les maladies neurodĂ©gĂ©nĂ©ratives. Les mĂ©canismes prĂ©cis qui contrĂŽlent la plasticitĂ© neuro-vasculaire, etc. restent largement mĂ©connus. Cependant, Ă©tudier le rĂŽle que joue la vascularisation dans l'ensemble des systĂšmes cognitifs reprĂ©sente un vĂ©ritable dĂ©fi technique car trĂšs peu de ressources sont disponibles. Nous avons donc dĂ©veloppĂ© une pipeline permettant d’imager la vascularisation cĂ©rĂ©brale entiĂšre, afin de caractĂ©riser l'Ă©tat et l'Ă©volution du systĂšme vasculaire dans diffĂ©rentes conditions pathologiques (Kirst, Skriabine, Vieites-Prado et al 2020). Nous proposons Ă©galement de suivre l'Ă©volution du rĂ©seau vasculaire pendant le dĂ©veloppement. Nous fournissons des ressources sous forme d'atlas et d'outils informatiques pour dĂ©bloquer la recherche sur le dĂ©veloppement cĂ©rĂ©bral chez les souris. Cela conduit Ă  la caractĂ©risation complĂšte du systĂšme vasculaire : de fortes disparitĂ©s ont Ă©tĂ© observĂ©es tant en termes de densitĂ©s que de topologie. L’observation d’un remaniement plastique vasculaire aprĂšs un accident vasculaire cĂ©rĂ©bral, ainsi la dĂ©gradation vasculaire chez des souris sourdes congĂ©nitales apportent ainsi des preuves solides de la corrĂ©lation entre l'activitĂ© et le stress neuronal et la topologie vasculaire. Pour approfondir l'Ă©tude des hĂ©tĂ©rogĂ©nĂ©itĂ©s vasculaires, nous avons examinĂ© leur Ă©volution au cours du dĂ©veloppement : le dĂ©veloppement vasculaire se produit par vagues dont la longueur et l'intensitĂ© dĂ©pendent de la rĂ©gion cĂ©rĂ©brale. Les systĂšmes somatosensoriels (rĂ©gions corticales et thalamiques) semblent se dĂ©velopper conjointement, et l’on peut Ă©mettre l'hypothĂšse de l' existence d’un lien entre la longueur de la fenĂȘtre de dĂ©veloppement et les hĂ©tĂ©rogĂ©nĂ©itĂ©s d'orientation/densitĂ©. Une perturbation prĂ©coce du systĂšme (par la privation sensorielle par exemple) entraĂźne une modification de la topologie vasculaire chez l’adulte, suggĂ©rant une corrĂ©lation entre l'activitĂ© neuronale au cours du dĂ©veloppement et une diminution de la densitĂ© vasculaire. La diminution de l'activitĂ© neuronale impacte Ă©galement le vieillissement, en accĂ©lĂ©rant la dĂ©gradation vasculaire, non seulement dans le cortex, mais aussi dans les zones thalamiques liĂ©es Ă  la mĂ©moire et Ă  la cognition, et reconnues pour ĂȘtre impliquĂ©es chez l'homme dans les troubles neurologiques liĂ©s Ă  l'Ăąge

    Modélisation de graphes et analyse du réseau cérébro-vasculaire du cerveau

    No full text
    The cerebral vascularization is a vast network aimed at adequately distributing the nutrients and oxygen necessary for energy. Its functioning is closely linked to the activity of the neurons that populate it. This delicate balance involves multiple mechanisms, including neurovascular coupling interactions. It is assumed that neurovascular imbalances are involved in most brain and vascular diseases, such as neurodegenerative diseases. The precise mechanisms that control neurovascular plasticity, etc. remain largely unknown. However, studying the role that the vasculature plays in all cognitive systems is a real technical challenge because very few resources are available. We have therefore developed a pipeline to image the vasculature of whole organs in a reasonable time frame in order to characterize the state and evolution of the vascular system under different pathological conditions (Kirst, Skriabine, Vieites-Prado et al 2020). We also propose to monitor the evolution of the vascular network during development. We provide resources in the form of atlases and computational tools to unlock research on brain development in mice. This leads to the complete characterization of the vascular system: strong disparities were observed in both densities and topology. In particular in the cortical areas, these differences are sufficient to characterize the function (integrative or somato-sensory) of the different cortical regions. The observation of vascular plastic remodeling after stroke, as well as vascular degradation in congenitally deaf mice thus provide strong evidence for the correlation between neuronal activity and stress and vascular topology. To further investigate vascular heterogeneities, we examined their evolution during development: Vascular development occurs in waves whose length and intensity depend on the brain region. The somatosensory systems (cortical and thalamic regions) seem to develop together, and it can be hypothesized that there is a link between the length of the developmental window and the orientation/density heterogeneities. Early disruption of the system (e.g., by sensory deprivation) leads to a change in vascular topology in the adult, suggesting that decreased neuronal activity during development leads to decreased vascular density in the affected regions. In adulthood, such a loss of vessels has not been observed after a decrease in neuronal activity. However, a decrease in neuronal activity shows an impact during long-term aging in mice, by accelerating vascular degradation, not only in somatosensory areas but also in thalamic areas related to memory and cognition, and known to be involved in age-related neurological disorders in humans.La vascularisation cĂ©rĂ©brale est un vaste rĂ©seau visant Ă  distribuer de maniĂšre adĂ©quate les nutriments et l'oxygĂšne nĂ©cessaires Ă  l'Ă©nergie. Son fonctionnement est Ă©troitement liĂ© Ă  l'activitĂ© des neurones qui le peuplent. Cet Ă©quilibre dĂ©licat fait intervenir de multiples mĂ©canismes, notamment des interactions de couplage neurovasculaire. Il est supposĂ© que des dĂ©sĂ©quilibres neurovasculaires sont impliquĂ©s dans la plupart des maladies cĂ©rĂ©brales et vasculaires, telles que les maladies neurodĂ©gĂ©nĂ©ratives. Les mĂ©canismes prĂ©cis qui contrĂŽlent la plasticitĂ© neuro-vasculaire, etc. restent largement mĂ©connus. Cependant, Ă©tudier le rĂŽle que joue la vascularisation dans l'ensemble des systĂšmes cognitifs reprĂ©sente un vĂ©ritable dĂ©fi technique car trĂšs peu de ressources sont disponibles. Nous avons donc dĂ©veloppĂ© une pipeline permettant d’imager la vascularisation cĂ©rĂ©brale entiĂšre, afin de caractĂ©riser l'Ă©tat et l'Ă©volution du systĂšme vasculaire dans diffĂ©rentes conditions pathologiques (Kirst, Skriabine, Vieites-Prado et al 2020). Nous proposons Ă©galement de suivre l'Ă©volution du rĂ©seau vasculaire pendant le dĂ©veloppement. Nous fournissons des ressources sous forme d'atlas et d'outils informatiques pour dĂ©bloquer la recherche sur le dĂ©veloppement cĂ©rĂ©bral chez les souris. Cela conduit Ă  la caractĂ©risation complĂšte du systĂšme vasculaire : de fortes disparitĂ©s ont Ă©tĂ© observĂ©es tant en termes de densitĂ©s que de topologie. L’observation d’un remaniement plastique vasculaire aprĂšs un accident vasculaire cĂ©rĂ©bral, ainsi la dĂ©gradation vasculaire chez des souris sourdes congĂ©nitales apportent ainsi des preuves solides de la corrĂ©lation entre l'activitĂ© et le stress neuronal et la topologie vasculaire. Pour approfondir l'Ă©tude des hĂ©tĂ©rogĂ©nĂ©itĂ©s vasculaires, nous avons examinĂ© leur Ă©volution au cours du dĂ©veloppement : le dĂ©veloppement vasculaire se produit par vagues dont la longueur et l'intensitĂ© dĂ©pendent de la rĂ©gion cĂ©rĂ©brale. Les systĂšmes somatosensoriels (rĂ©gions corticales et thalamiques) semblent se dĂ©velopper conjointement, et l’on peut Ă©mettre l'hypothĂšse de l' existence d’un lien entre la longueur de la fenĂȘtre de dĂ©veloppement et les hĂ©tĂ©rogĂ©nĂ©itĂ©s d'orientation/densitĂ©. Une perturbation prĂ©coce du systĂšme (par la privation sensorielle par exemple) entraĂźne une modification de la topologie vasculaire chez l’adulte, suggĂ©rant une corrĂ©lation entre l'activitĂ© neuronale au cours du dĂ©veloppement et une diminution de la densitĂ© vasculaire. La diminution de l'activitĂ© neuronale impacte Ă©galement le vieillissement, en accĂ©lĂ©rant la dĂ©gradation vasculaire, non seulement dans le cortex, mais aussi dans les zones thalamiques liĂ©es Ă  la mĂ©moire et Ă  la cognition, et reconnues pour ĂȘtre impliquĂ©es chez l'homme dans les troubles neurologiques liĂ©s Ă  l'Ăąge

    DHP19: Dynamic Vision Sensor 3D Human Pose Dataset

    Full text link
    Human pose estimation has dramatically improved thanks to the continuous developments in deep learning. However, marker-free human pose estimation based on standard frame-based cameras is still slow and power hungry for real-time feedback interaction because of the huge number of operations necessary for large Convolutional Neural Network (CNN) inference. Event-based cameras such as the Dynamic Vision Sensor (DVS) quickly output sparse moving-edge information. Their sparse and rapid output is ideal for driving low-latency CNNs, thus potentially allowing real-time interaction for human pose estimators. Although the application of CNNs to standard frame-based cameras for human pose estimation is well established, their application to event-based cameras is still under study. This paper proposes a novel benchmark dataset of human body movements, the Dynamic Vision Sensor Human Pose dataset (DHP19). It consists of recordings from 4 synchronized 346x260 pixel DVS cameras, for a set of 33 movements with 17 subjects. DHP19 also includes a 3D pose estimation model that achieves an average 3D pose estimation error of about 8 cm, despite the sparse and reduced input data from the DVS

    Mapping the Fine-Scale Organization and Plasticity of the Brain Vasculature

    Get PDF
    International audienceThe cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized multichannel images from light sheet microscopy, enabling the construction, analysis, and visualization of vascular graphs composed of over 100 million vessel segments. We generated datasets from over 20 mouse brains, with labeled arteries, veins, and capillaries according to their anatomical regions. We characterized the organization of the vascular network across brain regions, highlighting local adaptations and functional correlates. We propose a classification of cortical regions based on the vascular topology. Finally, we analysed brain-wide rearrangements of the vasculature in animal models of congenital deafness and ischemic stroke, revealing that vascular plasticity and remodeling adopt diverging rules in different models
    corecore