881 research outputs found
Forest Carbon Sequestration under the U.S. Biofuel Energy Policies
This paper analyzes impacts of the U.S. biofuel energy policies on the carbon sequestration by forest products, which is expressed as Harvested Wood Products (HWP) Contribution under the United Nations Framework Convention on Climate Change. Estimation for HWP Contribution is based on tracking carbon stock stored in wood and paper products in use and in solid-waste disposal sites (SWDS) from domestic consumption, harvests, imports, and exports. For this analysis, we hypothesize four alternative scenarios using the existing and pending U.S. energy policies by requirements for the share of biofuel to total energy consumption, and solve partial equilibrium for the U.S. timber market by 2030 for each scenario. The U.S. Forest Products Module (USFPM), created by USDA Forest Service Lab, operating within the Global Forest Products Model (GFPM) is utilized for projecting productions, supplies, and trade quantities for the U.S. timber market equilibrium. Based on those timber market components, we estimate scenario-specific HWP Contributions under the Production, the Stock Change, and the Atmospheric Approach suggested by Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories using WOODCARB II created by VTT Technical Research Centre of Finland and modified by USDA Forest Service Lab. Lastly, we compare estimated results across alternative scenarios. Results show that HWP Contributions for the baseline scenario in 2009 for all approaches are estimated higher than estimates reported by U.S. Environmental Protection Agency in 2011, (e.g., 22.64 Tg C/ year vs 14.80 Tg C/ year under the Production Approach), which is due to the economic recovery, especially in housing construction, assumed in USFPM/GFPM. Projected HWP Contribution estimates show that the Stock Change Approach, which used to provide the highest estimates before 2009, estimate HWP Contribution lowest after 2009 due to the declining annual net imports. Though fuel wood consumption is projected to be expanded as an alternative scenario requires higher wood fuel share to total energy consumption, the overall impacts on the expansion in other timber products are very modest across scenarios in USFPM/GFPM. Those negligible impacts lead to small differences of HWP Contribution estimates under all approaches across alternative scenarios. This is explained by the points that increasing logging residues are more crucial for expansion in fuel wood projections rather than the expansion of forest sector itself, and that the current HWP Contribution does not include carbon held in fuel wood products by its definition.Forest Products, Carbon Sequestration, Biofuel Policies, HWP Contribution, Resource /Energy Economics and Policy,
A NOVEL INDIRECT PATHWAY OF CRF INNERVATION TO PERIFORNICAL OREXIN NEURONS IS RELAYED THROUGH THE LATERAL SEPTUM
A Novel Indirect Pathway of CRF Innervation to Perifornical Orexin Neurons is Relayed Through the Lateral Septum
Timothy D. Skog
Director: Patrick J. Ronan, PhD
Orexin (Orx) and corticotropin releasing factor (CRF) play integral, sometimes parallel, roles in a host of arousal/stress responses. These neuromodulators have been implicated in a variety of stress-induced psychiatric disorders including addiction and affective disorders. Previous work has indicated that these systems interact and regulate each other—perhaps providing a feed-forward mechanism for enhancing and fine-tuning stress responses. This is implied by the fact that orexinergic neurons in the hypothalamus receive innervation from many CRF-rich neuronal fields including the paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We sought to clarify if these CRF afferent pathways include CRF neurons and to determine whether these inputs have any topographical organization. To accomplish this, we used a combination of neuronal tracing methods and immunohistochemistry to visualize the distribution and anatomy of these systems in various brain regions. We provide further evidence that CRF neurons in these regions specifically project to Orx neuron fields, as well as describe a novel circuit pathway for indirect CRF innervation of orexinergic neurons in the hypothalamus through the lateral septum. There appears to be specific topographic distribution of inputs supporting the hypothesis that perifornical Orx neurons preferentially contribute to stress and anxiety responses
Review of Person Re-identification Techniques
Person re-identification across different surveillance cameras with disjoint
fields of view has become one of the most interesting and challenging subjects
in the area of intelligent video surveillance. Although several methods have
been developed and proposed, certain limitations and unresolved issues remain.
In all of the existing re-identification approaches, feature vectors are
extracted from segmented still images or video frames. Different similarity or
dissimilarity measures have been applied to these vectors. Some methods have
used simple constant metrics, whereas others have utilised models to obtain
optimised metrics. Some have created models based on local colour or texture
information, and others have built models based on the gait of people. In
general, the main objective of all these approaches is to achieve a
higher-accuracy rate and lowercomputational costs. This study summarises
several developments in recent literature and discusses the various available
methods used in person re-identification. Specifically, their advantages and
disadvantages are mentioned and compared.Comment: Published 201
Microguards and micromessengers of the genome
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic
Can screening and brief intervention lead to population-level reductions in alcohol-related harm?
A distinction is made between the clinical and public health justifications for screening and brief intervention (SBI) against hazardous and harmful alcohol consumption. Early claims for a public health benefit of SBI derived from research on general medical practitioners' (GPs') advice on smoking cessation, but these claims have not been realized, mainly because GPs have not incorporated SBI into their routine practice. A recent modeling exercise estimated that, if all GPs in England screened every patient at their next consultation, 96% of the general population would be screened over 10 years, with 70-79% of excessive drinkers receiving brief interventions (BI); assuming a 10% success rate, this would probably amount to a population-level effect of SBI. Thus, a public health benefit for SBI presupposes widespread screening; but recent government policy in England favors targeted versus universal screening, and in Scotland screening is based on new registrations and clinical presentation. A recent proposal for a national screening program was rejected by the UK National Health Service's National Screening Committee because 1) there was no good evidence that SBI led to reductions in mortality or morbidity, and 2) a safe, simple, precise, and validated screening test was not available. Even in countries like Sweden and Finland, where expensive national programs to disseminate SBI have been implemented, only a minority of the population has been asked about drinking during health-care visits, and a minority of excessive drinkers has been advised to cut down. Although there has been research on the relationship between treatment for alcohol problems and population-level effects, there has been no such research for SBI, nor have there been experimental investigations of its relationship with population-level measures of alcohol-related harm. These are strongly recommended. In this article, conditions that would allow a population-level effect of SBI to occur are reviewed, including their political acceptability. It is tentatively concluded that widespread dissemination of SBI, without the implementation of alcohol control measures, might have indirect influences on levels of consumption and harm but would be unlikely on its own to result in public health benefits. However, if and when alcohol control measures were introduced, SBI would still have an important role in the battle against alcohol-related harm
Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes
Journal ArticleThis is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version is available in Diabetes, May 2015, vol. 64, no. 5 pp. 1682-1687 in print and online at http://diabetes.diabetesjournals.org/content/64/5/1682.abstractThe Diabetes Virus Detection study (DiViD) is the first to examine fresh pancreatic tissue at the diagnosis of type 1 diabetes for the presence of viruses. Minimal pancreatic tail resection was performed 3-9 weeks after onset of type 1 diabetes in six adult patients (age 24-35 years). The presence of enteroviral capsid protein 1 (VP1) and the expression of class I HLA were investigated by immunohistochemistry. Enterovirus RNA was analyzed from isolated pancreatic islets and from fresh-frozen whole pancreatic tissue using PCR and sequencing. Nondiabetic organ donors served as controls. VP1 was detected in the islets of all type 1 diabetic patients (two of nine controls). Hyperexpression of class I HLA molecules was found in the islets of all patients (one of nine controls). Enterovirus-specific RNA sequences were detected in four of six patients (zero of six controls). The results were confirmed in various laboratories. Only 1.7% of the islets contained VP1(+) cells, and the amount of enterovirus RNA was low. The results provide evidence for the presence of enterovirus in pancreatic islets of type 1 diabetic patients, which is consistent with the possibility that a low-grade enteroviral infection in the pancreatic islets contributes to disease progression in humans.Academy of FinlandSouth-Eastern Norway Regional HealthAuthorityNovo Nordisk FoundationPEVNET (Persistent Virus Infection in Diabetes Network) Study GroupEuropean Union’s Seventh Framework ProgrammeSwedish Medical Research CouncilDiabetes Wellness FoundationJDR
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Speciation of OH reactivity above the canopy of an isoprene-dominated forest
Measurements of OH reactivity, the inverse lifetime of the OH radical, can provide a top–down estimate of the total amount of reactive carbon in an air mass. Using a comprehensive measurement suite, we examine the measured and modeled OH reactivity above an isoprene-dominated forest in the southeast United States during the 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign. Measured and modeled species account for the vast majority of average daytime reactivity (80–95 %) and a smaller portion of nighttime and early morning reactivity (68–80 %). The largest contribution to total reactivity consistently comes from primary biogenic emissions, with isoprene contributing ∼ 60 % in the afternoon, and ∼ 30–40 % at night and monoterpenes contributing ∼ 15–25 % at night. By comparing total reactivity to the reactivity stemming from isoprene alone, we find that ∼ 20 % of the discrepancy is temporally related to isoprene reactivity, and an additional constant ∼ 1 s^(−1) offset accounts for the remaining portion. The model typically overestimates measured OVOC concentrations, indicating that unmeasured oxidation products are unlikely to influence measured OH reactivity. Instead, we suggest that unmeasured primary emissions may influence the OH reactivity at this site
Exosomes: Looking back three decades and into the future
Exosomes are extracellular membrane vesicles whose biogenesis by exocytosis of multivesicular endosomes was discovered in 1983. Since their discovery 30 years ago, it has become clear that exosomes contribute to many aspects of physiology and disease, including intercellular communication. We discuss the initial experiments that led to the discovery of exosomes and highlight some of the exciting current directions in the field
Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene
We use a large laboratory, modeling, and field dataset to investigate the isoprene + O_3 reaction, with the goal of better understanding the fates of the C_1 and C_4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C_1 stabilized Criegee (CH_2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C_4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH_2OO + H_2O (k_((H_2O)) ∼ 1 × 10^(−15) cm^3 molec^(−1) s^(−1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H_2O_2, and 21% formic acid + H_2O; and CH_2OO + (H_2O)_2 (k_((H_2O)_2) ∼ 1 × 10^(−12) cm^3 molec^(−1) s^(−1)) yields 40% HMHP, 6% formaldehyde + H_2O_2, and 54% formic acid + H_2O. Competitive rate determinations (k_(SO_2/k(H_2O)n=1,2) ∼ 2.2 (±0.3) × 10^4) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO_2] ∼ 10 ppb). The importance of the CH_2OO + (H_2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH_2OO does not substantially affect the lifetime of SO_2 or HCOOH in the Southeast US, e.g., CH_2OO + SO_2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant
- …
