2,495 research outputs found

    A model for fluvial bedrock incision by impacting suspended and bed load sediment

    Get PDF
    A mechanistic model is derived for the rate of fluvial erosion into bedrock by abrasion from uniform size particles that impact the bed during transport in both bed and suspended load. The erosion rate is equated to the product of the impact rate, the mass loss per particle impact, and a bed coverage term. Unlike previous models that consider only bed load, the impact rate is not assumed to tend to zero as the shear velocity approaches the threshold for suspension. Instead, a given sediment supply is distributed between the bed and suspended load by using formulas for the bed load layer height, bed load velocity, logarithmic fluid velocity profile, and Rouse sediment concentration profile. It is proposed that the impact rate scales linearly with the product of the near-bed sediment concentration and the impact velocity and that particles impact the bed because of gravitational settling and advection by turbulent eddies. Results suggest, unlike models that consider only bed load, that the erosion rate increases with increasing transport stage (for a given relative sediment supply), even for transport stages that exceed the onset of suspension. In addition, erosion can occur if the supply of sediment exceeds the bed load transport capacity because a portion of the sediment load is transported in suspension. These results have implications for predicting erosion rates and channel morphology, especially in rivers with fine sediment, steep channel-bed slopes, and large flood events

    Real Property

    Get PDF
    This article presents a survey of important Florida appellate court decisions between December 1987 and September 1988 in the area of real property law

    A new test procedure of independence in copula models via chi-square-divergence

    Full text link
    We introduce a new test procedure of independence in the framework of parametric copulas with unknown marginals. The method is based essentially on the dual representation of χ2\chi^2-divergence on signed finite measures. The asymptotic properties of the proposed estimate and the test statistic are studied under the null and alternative hypotheses, with simple and standard limit distributions both when the parameter is an interior point or not.Comment: 23 pages (2 figures). Submitted to publicatio

    States are making it harder to sue nursing homes over COVID-19: Why immunity from lawsuits is a problem

    Get PDF
    Nearly half the states have reduced liability for health care providers at a time when nursing home regulation is declining and families can't visit loved ones for fear of spreading the coronavirus

    Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles

    Get PDF
    Notch is a highly conserved transmembrane protein that is involved in cell fate decisions and is found in organisms ranging from Drosophila to humans. A human homologue of Notch, TAN1, was initially identified at the chromosomal breakpoint of a subset of T-cell lymphoblastic leukemias/lymphomas containing a t(7;9) chromosomal translocation; however, its role in oncogenesis has been unclear. Using a bone marrow reconstitution assay with cells containing retrovirally transduced TAN1 alleles, we analyzed the oncogenic potential of both nuclear and extranuclear forms of truncated TAN1 in hematopoietic cells. Although the Moloney leukemia virus long terminal repeat drives expression in most hematopoietic cell types, retroviruses encoding either form of the TAN1 protein induced clonal leukemias of exclusively immature T cell phenotypes in approximately 50% of transplanted animals. All tumors overexpressed truncated TAN1 of the size and subcellular localization predicted from the structure of the gene. These results show that TAN1 is an oncoprotein and suggest that truncation and overexpression are important determinants of transforming activity. Moreover, the murine tumors caused by TAN1 in the bone marrow transplant model are very similar to the TAN1-associated human tumors and suggest that TAN1 may be specifically oncotropic for T cells

    Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy

    Get PDF
    The transient response of bedrock rivers to a drop in base level can be used to discriminate between competing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transport‐limited erosion model, while other authors suggest that a detachment‐limited model best explains their field data. The difference is thought to be due to the relative volume of sediment being fluxed through the fluvial system. Using a pragmatic approach, we address this debate by testing the ability of end‐member fluvial erosion models to reproduce the well‐documented evolution of three catchments in the central Apennines (Italy) which have been perturbed to various extents by an independently constrained increase in relative uplift rate. The transport‐limited model is unable to account for the catchments’response to the increase in uplift rate, consistent with the observed low rates of sediment supply to the channels. Instead, a detachment‐limited model with a threshold corresponding to the field‐derived median grain size of the sediment plus a slope‐dependent channel width satisfactorily reproduces the overall convex long profiles along the studied rivers. Importantly, we find that the prefactor in the hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster the higher the uplift rate, consistent with field observations. We conclude that a slope‐ dependent channel width and an entrainment/erosion threshold are necessary ingredients when modeling landscape evolution or mapping the distribution of fluvial erosion rates in areas where the rate of sediment supply to channels is low

    Strong Approximation of Empirical Copula Processes by Gaussian Processes

    Full text link
    We provide the strong approximation of empirical copula processes by a Gaussian process. In addition we establish a strong approximation of the smoothed empirical copula processes and a law of iterated logarithm

    Individual, Neighborhood, and Situational Factors Associated with Violent Victimization and Offending

    Get PDF
    The criminological literature presents substantial evidence that victims and offenders in violent crimes share demographic characteristics, engage in similar lifestyles and activities, and reside in socially disorganized neighborhoods. However, research has examined these relationships separately using either victimization or offending data, and prior studies have not examined these relationships by comparing victims and offenders within the same incidents. This limits the effect of examining whether these factors are associated with victimization and offending in similar or distinct ways. Using a law enforcement database of victims (n = 1,248) and offenders (n = 1,735) involved within the same aggravated battery incidents (n = 1,015) in Bernalillo County, New Mexico, this research explores whether victims and offenders involved in non-lethal violence share certain individual, neighborhood and situational characteristics. Results suggest that victims and offenders live in socially disorganized neighborhoods and engage in risky lifestyles and violent offending behaviors in similar proportions. These findings highlight the overlapping factors associated with victimization and offending in non-lethal violent personal crimes. The implications of these findings are discussed
    • 

    corecore