8,978 research outputs found

    THE OPTICAL SCANNER - FRIEND OR FOE?

    Get PDF
    Examines pros and cons of the optical scanner for various institutions in the distribution channel. Concludes it's good.Agribusiness,

    On the high coherence of kilo-Hz Quasi-Periodic Oscillations

    Full text link
    We have carried out a systematic study of the properties of the kilo-Hertz quasi-periodic oscillations (QPO) observed in the X-ray emission of the neutron star low-mass X-ray binary 4U1608-52, using archival data obtained with the Rossi X-ray Timing Explorer. We have investigated the quality factor, Q, of the oscillations (defined as the ratio of the frequency of the QPO peak to its full width at half maximum). In order to minimise the effect of long-term frequency drifts, power spectra were computed over the shortest times permitted by the data statistics. We show that the high Q of ~200 reported by Berger et al. (1996) for the lower frequency kilo-Hz QPO in one of their observations is by no means exceptional, as we observe a mean Q value in excess of 150 in 14 out of the 21 observations analysed and Q can remain above 200 for thousands of seconds. The frequency of the QPO varies over the wide range 560--890 Hz and we find a systematic trend for the coherence time of the QPO, estimated as tau=Q /(pi nu), to increase with the frequency, up to a maximum level at ~ 800 Hz, beyond which it appears to decrease, at frequencies where the QPO weakens. There is a more complex relationship between tau and the QPO root mean squared amplitude (RMS), in which positive and negative correlations can be found. A higher-frequency QPO, revealed by correcting for the frequency drift of the 560-890 Hz one, has a much lower Q (~10) which does not follow the same pattern. We discuss these results in the framework of competing QPO models and show that those involving clumps orbiting within or above the accretion disk are ruled out.Comment: Accepted for publication in MNRAS, 8 pages, 6 figures, 3 Table

    The Chandra X-ray Spectrum of the 10.6 s Pulsar in Westerlund 1: Testing the Magnetar Hypothesis

    Get PDF
    Two sensitive Chandra X-ray observations of the heavily-reddened galactic starburst cluster Westerlund 1 in May and June 2005 detected a previously unknown X-ray pulsar (CXO J164710.20-455217). Its slow 10.6 s pulsations, moderate X-ray temperature kT \approx 0.5 keV, and apparent lack of a massive companion tentatively suggest that it is an Anomalous X-ray Pulsar (AXP). An isothermal blackbody model yields an acceptable spectral fit but the inferred source radius is much less than that of a neutron star, a result that has also been found for other AXPs. We analyze the X-ray spectra with more complex models including a model that assumes the pulsar is a strongly magnetized neutron star (``magnetar'') with a light element atmosphere. We conclude that the observed X-ray emission cannot be explained as global surface emission arising from the surface of a cooling neutron star or magnetar. The emission likely arises in one or more localized regions (``hot spots'') covering a small fraction of the surface. We discuss these new results in the context of both accretion and magnetar interpretations for the X-ray emission.Comment: 14 pages, 5 figures; to appear in Ap

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s \rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    XMM-Newton X-ray observations of the Wolf-Rayet binary system WR 147

    Get PDF
    We present results of an ≈20-ks X-ray observation of the Wolf-Rayet (WR) binary system WR 147 obtained with XMM-Newton. Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from infrared studies and reveal hot plasma including the first detection of the Fe Kα line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature kTshock= 2.7 keV (Tshock≈ 31 MK), close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretatio

    Library Tools for Connecting With the Curriculum: How To Create a Professional Development Workshop for Teaching Faculty

    Get PDF
    The article focuses on ways taken by librarians in linking library tools with the faculty curriculum in Georgia. It states that librarians Sonya Shepherd, Debra Skinner and Bob Fernekes from Zach S. Henderson Library have formed a team that would push students into library resources required by their faculty. It also mentions the creation of linking tools tutorials to improve student and faculty use of the resources

    A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae

    Full text link
    We present the results of far-infrared imaging of extended regions around three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS 16342-3814, at 70 and 160 μ\mum with the MIPS instrument on the Spitzer Space Telescope. After a careful subtraction of the point spread function of the central star from these images, we place constraints on the existence of extended shells and thus on the mass outflow rates as a function of radial distance from these stars. We find no apparent extended emission in AFGL 2688 and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of AFGL 2688, this result is inconsistent with a previous report of two extended dust shells made on the basis of ISO observations. We derive an upper limit of 2.1×1072.1\times10^{-7} M_\odot yr1^{-1} and 1.0×1071.0\times10^{-7} M_\odot yr1^{-1} for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively, at 200 arcseconds from each source. In contrast to these two sources, IRAS 16342-3814 does show extended emission at both wavelengths, which can be interpreted as a very large dust shell with a radius of \sim 400 arcseconds and a thickness of \sim 100 arcseconds, corresponding to 4 pc and 1 pc, respectively, at a distance of 2 kpc. However, this enhanced emission may also be galactic cirrus; better azimuthal coverage is necessary for confirmation of a shell. If the extended emission is a shell, it can be modeled as enhanced mass outflow at a dust mass outflow rate of 1.5×1061.5\times10^{-6} M_\odot yr1^{-1} superimposed on a steady outflow with a dust mass outflow rate of 1.5×1071.5\times10^{-7} M_\odot yr1^{-1}. It is likely that this shell has swept up a substantial mass of interstellar gas during its expansion, so these estimates are upper limits to the stellar mass loss rate.Comment: 31 pages, 12 figures, accepted to A
    corecore