12,009 research outputs found

    X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

    Full text link
    Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.Comment: To be published in "Experimental Astronomy

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    On the high coherence of kilo-Hz Quasi-Periodic Oscillations

    Full text link
    We have carried out a systematic study of the properties of the kilo-Hertz quasi-periodic oscillations (QPO) observed in the X-ray emission of the neutron star low-mass X-ray binary 4U1608-52, using archival data obtained with the Rossi X-ray Timing Explorer. We have investigated the quality factor, Q, of the oscillations (defined as the ratio of the frequency of the QPO peak to its full width at half maximum). In order to minimise the effect of long-term frequency drifts, power spectra were computed over the shortest times permitted by the data statistics. We show that the high Q of ~200 reported by Berger et al. (1996) for the lower frequency kilo-Hz QPO in one of their observations is by no means exceptional, as we observe a mean Q value in excess of 150 in 14 out of the 21 observations analysed and Q can remain above 200 for thousands of seconds. The frequency of the QPO varies over the wide range 560--890 Hz and we find a systematic trend for the coherence time of the QPO, estimated as tau=Q /(pi nu), to increase with the frequency, up to a maximum level at ~ 800 Hz, beyond which it appears to decrease, at frequencies where the QPO weakens. There is a more complex relationship between tau and the QPO root mean squared amplitude (RMS), in which positive and negative correlations can be found. A higher-frequency QPO, revealed by correcting for the frequency drift of the 560-890 Hz one, has a much lower Q (~10) which does not follow the same pattern. We discuss these results in the framework of competing QPO models and show that those involving clumps orbiting within or above the accretion disk are ruled out.Comment: Accepted for publication in MNRAS, 8 pages, 6 figures, 3 Table

    Imaging and burst location with the EXIST high-energy telescope

    Full text link
    The primary instrument of the proposed EXIST mission is a coded mask high energy telescope (the HET), that must have a wide field of view and extremely good sensitivity. It will be crucial to minimize systematic errors so that even for very long total integration times the imaging performance is close to the statistical photon limit. There is also a requirement to be able to reconstruct images on-board in near real time in order to detect and localize gamma-ray bursts. This must be done while the spacecraft is scanning the sky. The scanning provides all-sky coverage and is key to reducing systematic errors. The on-board computational problem is made even more challenging for EXIST by the very large number of detector pixels. Numerous alternative designs for the HET have been evaluated. The baseline concept adopted depends on a unique coded mask with two spatial scales. Monte Carlo simulations and analytic analysis techniques have been used to demonstrate the capabilities of the design and of the proposed two-step burst localization procedure

    A Persistent High-Energy Flux from the Heart of the Milky Way : Integral's view of the Galactic Center

    Get PDF
    The Ibis/Isgri imager on Integral detected for the first time a hard X-ray source, IGR J17456-2901, located within 1' of Sgr A* over the energy range 20-100 keV. Here we present the results of a detailed analysis of ~7 Ms of Integral observations of the GC. With an effective exposure of 4.7 Ms we have obtained more stringent positional constraints on this HE source and constructed its spectrum in the range 20-400 keV. Furthermore, by combining the Isgri spectrum with the total X-ray spectrum corresponding to the same physical region around SgrA* from XMM data, and collected during part of the Integral observations, we constructed and present the first accurate wide band HE spectrum for the central arcmins of the Galaxy. Our complete analysis of the emission properties of IGR shows that it is faint but persistent with no variability above 3 sigma contrary to what was alluded to in our first paper. This result, in conjunction with the spectral characteristics of the X-ray emission from this region, suggests that the source is most likely not point-like but, rather, that it is a compact, yet diffuse, non-thermal emission region. The centroid of IGR is estimated to be R.A.=17h45m42.5, decl.=-28deg59'28'', offset by 1' from the radio position of Sgr A* and with a positional uncertainty of 1'. Its 20-400 keV luminosity at 8 kpc is L=5.4x10^35 erg/sec. Very recently, Hess detected of a source of ~TeV g-rays also located within 1' of Sgr A*. We present arguments in favor of an interpretation according to which the photons detected by Integral and Hess arise from the same compact region of diffuse emission near the central BH and that the supernova remnant Sgr A East could play an important role as a contributor of very HE g-rays to the overall spectrum from this region.Comment: 14 pages, 11 figures, Accepted for publication in Ap

    The problem of shot selection in basketball

    Get PDF
    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this paper, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. I derive an answer to the question "how likely must the shot be to go in before the player should take it?", and show that this "lower cutoff" for shot quality ff depends crucially on the number nn of shot opportunities remaining (say, before the shot clock expires), with larger nn demanding that only higher-quality shots should be taken. The function f(n)f(n) is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. This prediction is compared to observed shooting rates from the National Basketball Association (NBA), and the comparison suggests that NBA players tend to wait too long before shooting and undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde

    Bone collecting by striped hyaenas, Hyaena hyaena, in Israel

    Get PDF
    Main articleDifferences in bone collecting behaviour of three species of hyaena and porcupines are discussed. Observations on feeding behaviour of striped hyaenas are described as well as their habit of carrying pieces away particularly if feeding cubs at maternity dens. At one maternity den near Arad the floor of the main cavern was littered with bones which covered an area of 40 m2. Of this 2,0 m2 was sampled and found to contain 267 bones and bone fragments from no fewer than 57 individuals, mainly of domestic species such as camel, donkey, caprovines and dogs.Non

    Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    Full text link
    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the \geq10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of \approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of \approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane \approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission

    A Spitzer Study of the Mass Loss Histories of Three Bipolar Pre-Planetary Nebulae

    Full text link
    We present the results of far-infrared imaging of extended regions around three bipolar pre-planetary nebulae, AFGL 2688, OH 231.8+4.2, and IRAS 16342−-3814, at 70 and 160 ÎŒ\mum with the MIPS instrument on the Spitzer Space Telescope. After a careful subtraction of the point spread function of the central star from these images, we place constraints on the existence of extended shells and thus on the mass outflow rates as a function of radial distance from these stars. We find no apparent extended emission in AFGL 2688 and OH 231.8+4.2 beyond 100 arcseconds from the central source. In the case of AFGL 2688, this result is inconsistent with a previous report of two extended dust shells made on the basis of ISO observations. We derive an upper limit of 2.1×10−72.1\times10^{-7} M⊙_\odot yr−1^{-1} and 1.0×10−71.0\times10^{-7} M⊙_\odot yr−1^{-1} for the dust mass loss rate of AFGL 2688 and OH 231.8, respectively, at 200 arcseconds from each source. In contrast to these two sources, IRAS 16342−-3814 does show extended emission at both wavelengths, which can be interpreted as a very large dust shell with a radius of ∌\sim 400 arcseconds and a thickness of ∌\sim 100 arcseconds, corresponding to 4 pc and 1 pc, respectively, at a distance of 2 kpc. However, this enhanced emission may also be galactic cirrus; better azimuthal coverage is necessary for confirmation of a shell. If the extended emission is a shell, it can be modeled as enhanced mass outflow at a dust mass outflow rate of 1.5×10−61.5\times10^{-6} M⊙_\odot yr−1^{-1} superimposed on a steady outflow with a dust mass outflow rate of 1.5×10−71.5\times10^{-7} M⊙_\odot yr−1^{-1}. It is likely that this shell has swept up a substantial mass of interstellar gas during its expansion, so these estimates are upper limits to the stellar mass loss rate.Comment: 31 pages, 12 figures, accepted to A
    • 

    corecore