86 research outputs found

    Jambudvīpe pracaramāṇaḥ: The Circulation of Mahāyāna Sūtras in India

    Get PDF

    Unsettling Boundaries: Verses shared by Śrāvaka and Mahāyāna texts

    Get PDF

    Validation of the Exoplanet Kepler-21b using PAVO/CHARA Long-Baseline Interferometry

    Get PDF
    We present long-baseline interferometry of the Kepler exoplanet host star HD179070 (Kepler-21) using the PAVO beam combiner at the CHARA Array. The visibility data are consistent with a single star and exclude stellar companions at separations ~1-1000 mas (~ 0.1-113 AU) and contrasts < 3.5 magnitudes. This result supports the validation of the 1.6 R_{earth} exoplanet Kepler-21b by Howell et al. (2012) and complements the constraints set by adaptive optics imaging, speckle interferometry, and radial velocity observations to rule out false-positives due to stellar companions. We conclude that long-baseline interferometry has strong potential to validate transiting extrasolar planets, particularly for future projects aimed at brighter stars and for host stars where radial velocity follow-up is not available.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letters; v2: minor changes added in proo

    Spectral Formation in X-Ray Pulsars: Bulk Comptonization in the Accretion Shock

    Full text link
    Accretion-powered X-ray pulsars are among the most luminous X-ray sources in the Galaxy. However, despite decades of theoretical and observational work since their discovery, no satisfactory model for the formation of the observed X-ray spectra has emerged. In particular, the previously available theories are unable to reproduce the power-law variation observed at high energies in many sources. In this paper, we present the first self-consistent calculation of the spectrum emerging from a pulsar accretion column that includes an explicit treatment of the energization occurring in the shock. Using a rigorous eigenfunction expansion method based on the exact dynamical solution for the velocity profile in the column, we obtain a closed-form expression for the Green's function describing the upscattering of radiation injected into the column from a monochromatic source located at the top of the thermal mound, near the base of the flow. The Green's function is convolved with a Planck distribution to calculate the radiation spectrum resulting from the reprocessing of blackbody photons emitted by the thermal mound. We demonstrate that the energization of the photons in the shock naturally produces an X-ray spectrum with a power-law shape at high energies and a blackbody shape at low energies, in agreement with many observations of accreting X-ray pulsars.Comment: Accepted for publication in Ap

    Exact Expressions for the Critical Mach Numbers in the Two-Fluid Model of Cosmic-Ray Modified Shocks

    Get PDF
    The acceleration of relativistic particles due to repeated scattering across a shock wave remains the most attractive model for the production of energetic cosmic rays. This process has been analyzed extensively during the past two decades using the ``two-fluid'' model of diffusive shock acceleration. It is well known that 1, 2, or 3 distinct solutions for the flow structure can be found depending on the upstream parameters. The precise nature of the critical conditions delineating the number and character of shock transitions has remained unclear, mainly due to the inappropriate choice of parameters used in the determination of the upstream boundary conditions. We derive the exact critical conditions by reformulating the upstream boundary conditions in terms of two individual Mach numbers defined with respect to the cosmic-ray and gas sound speeds, respectively. The gas and cosmic-ray adiabatic indices are assumed to remain constant throughout the flow, although they may have arbitrary, independent values. Our results provide for the first time a complete, analytical classification of the parameter space of shock transitions in the two-fluid model. When multiple solutions are possible, we propose using the associated entropy distributions as a means for indentifying the most stable configuration.Comment: Accepted for publication in ApJ; corrected a few typos; added journal re

    Spectrum and ionization rate of low energy Galactic cosmic rays

    Full text link
    We consider the rate of ionization of diffuse and molecular clouds in the interstellar medium by Galactic cosmic rays (GCR) in order to constrain its low energy spectrum. We extrapolate the GCR spectrum obtained from PAMELA at high energies (200\ge 200 GeV/ nucleon) and a recently derived GCR proton flux at 12001\hbox{--}200 GeV from observations of gamma rays from molecular clouds, and find that the observed average Galactic ionization rate can be reconciled with this GCR spectrum if there is a low energy cutoff for protons at 1010010\hbox{--}100 MeV. We also identify the flattening below a few GeV as being due to (a) decrease of the diffusion coefficient and dominance of convective loss at low energy and (b) the expected break in energy spectrum for a constant spectral index in momentum. We show that the inferred CR proton spectrum of ΦEkin1.7±0.2\Phi \propto E_{kin}^{-1.7\pm0.2} for EkinE_{kin} \le few GeV, is consistent with a power-law spectrum in momentum p2.45±0.4p^{-2.45\pm0.4}, which we identify as the spectrum at source. Diffusion loss at higher energies then introduces a steepening by EαE^{-\alpha} with α1/3\alpha \sim 1/3, making it consistent with high energy measurements.Comment: 5 pages, 3 figures, to appear in MNRAS Letter

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
    corecore