1,955 research outputs found

    On a Covariant Determination of Mass Scales in Warped Backgrounds

    Get PDF
    We propose a method of determining masses in brane scenarios which is independent of coordinate transformations. We apply our method to the scenario of Randall and Sundrum (RS) with two branes, which provides a solution to the hierarchy problem. The core of our proposal is the use of covariant equations and expressing all coordinate quantities in terms of invariant distances. In the RS model we find that massive brane fields propagate proper distances inversely proportional to masses that are not exponentially suppressed. The hierarchy between the gravitational and weak interactions is nevertheless preserved on the visible brane due to suppression of gravitational interactions on that brane. The towers of Kaluza-Klein states for bulk fields are observed to have different spacings on different branes when all masses are measured in units of the fundamental scale. Ratios of masses on each brane are the same in our covariant and the standard interpretations. Since masses of brane fields are not exponentiated, the fundamental scale of higher-dimensional gravity must be of the order of the weak scale.Comment: 14 page

    A "Littlest Higgs" Model with Custodial SU(2) Symmetry

    Full text link
    In this note, a ``littlest higgs'' model is presented which has an approximate custodial SU(2) symmetry. The model is based on the coset space SO(9)/(SO(5)×SO(4))SO(9)/(SO(5)\times SO(4)). The light pseudo-goldstone bosons of the theory include a {\it single} higgs doublet below a TeV and a set of three SU(2)WSU(2)_W triplets and an electroweak singlet in the TeV range. All of these scalars obtain approximately custodial SU(2) preserving vacuum expectation values. This model addresses a defect in the earlier SO(5)×SU(2)×U(1)SO(5)\times SU(2)\times U(1) moose model, with the only extra complication being an extended top sector. Some of the precision electroweak observables are computed and do not deviate appreciably from Standard Model predictions. In an S-T oblique analysis, the dominant non-Standard Model contributions are the extended top sector and higgs doublet contributions. In conclusion, a wide range of higgs masses is allowed in a large region of parameter space consistent with naturalness, where large higgs masses requires some mild custodial SU(2) violation from the extended top sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra discussion on size of T contributions, as well as some other minor clarifications. Version to appear in JHE

    Construction and Performance of a Micro-Pattern Stereo Detector with Two Gas Electron Multipliers

    Get PDF
    The construction of a micro-pattern gas detector of dimensions 40x10 cm**2 is described. Two gas electron multiplier foils (GEM) provide the internal amplification stages. A two-layer readout structure was used, manufactured in the same technology as the GEM foils. The strips of each layer cross at an effective crossing angle of 6.7 degrees and have a 406 um pitch. The performance of the detector has been evaluated in a muon beam at CERN using a silicon telescope as reference system. The position resolutions of two orthogonal coordinates are measured to be 50 um and 1 mm, respectively. The muon detection efficiency for two-dimensional space points reaches 96%.Comment: 21 pages, 17 figure

    Spin-photon entanglement with direct photon emission in the telecom C-band

    Full text link
    The ever-evolving demands for computational power and for a securely connected world dictate the development of quantum networks where entanglement is distributed between connected parties. Solid-state quantum emitters in the telecom C-band are a promising platform for quantum communication applications due to the minimal absorption of photons at these wavelengths, "on-demand" generation of single photon flying qubits, and ease of integration with existing network infrastructure. Here, we use an InAs/InP quantum dot to implement an optically active spin-qubit, based on a negatively charged exciton where the electron spin degeneracy is lifted using a Voigt magnetic field. We investigate the coherent interactions of the spin-qubit system under resonant excitation, demonstrating high fidelity spin initialisation and coherent control using picosecond pulses. We further use these tools to measure the coherence of a single, undisturbed electron spin in our system. Finally, we report the first demonstration of spin-photon entanglement in a solid-state system capable of direct emission into the telecom C-band.Comment: 19 pages (including references), 5 figure

    Chern-Simons and WZW Anomaly Cancelations Across Dimensions

    Full text link
    The WZW functional in D=4 can be derived directly from the Chern-Simons functional of a compactified D=5 gauge theory and the boundary fermions it supplants. A simple pedagogical model based on U(1) gauge groups illustrates how this works. A bulk-boundary system with the fermions eliminated manifestly evinces anomaly cancelations between CS and WZW terms.Comment: 6 pages, ReVtex 4, no figure

    t' at the LHC: the physics of discovery

    Full text link
    A search for a fourth family at the LHC is presently a low priority, but we argue that an effective search can be conducted early with only a few inverse femtobarns of data. We discuss a method based on invariant masses of single jets for identifying the WW's originating from heavy quark decays. This can significantly increase signal to background in the reconstruction of the tt' mass. We also study the various types of physics that can impact the background estimate, most notably higher order effects, initial state radiation, and models of the underlying event.Comment: 16 pages, 12 figures, small improvements, version to appear in JHE

    The Simplest Little Higgs

    Full text link
    We show that the SU(3) little Higgs model has a region of parameter space in which electroweak symmetry breaking is natural and in which corrections to precision electroweak observables are sufficiently small. The model is anomaly free, generates a Higgs mass near 150 GeV, and predicts new gauge bosons and fermions at 1 TeV.Comment: 13 pages + appendix, typos corrected, version to appear in JHE
    corecore