1,171 research outputs found

    Pan-European Chikungunya surveillance: Designing risk stratified surveillance zones

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Tilston et alThe first documented transmission of Chikungunya within Europe took place in Italy during the summer of 2007. Chikungunya, a viral infection affecting millions of people across Africa and Asia, can be debilitating and no prophylactic treatment exists. Although imported cases are reported frequently across Europe, 2007 was the first confirmed European outbreak and available evidence suggests that Aedes albopictus was the vector responsible and the index case was a visitor from India. This paper proposed pan-European surveillance zones for Chikungunya, based on the climatic conditions necessary for vector activity and viral transmission. Pan-European surveillance provides the best hope for an early-warning of outbreaks, because national boundaries do not play a role in defining the risk of this new vector borne disease threat. A review of climates, where Chikungunya has been active, was used to inform the delineation of three pan-European surveillance zones. These vary in size each month across the June-September period of greatest risk. The zones stretch across southern Europe from Portugal to Turkey. Although the focus of this study was to define the geography of potential surveillance zones based on the climatic limits on the vector and virus, a preliminary examination of inward bound airline passengers was also undertaken. This indicated that France and Italy are likely to be at greater risk due to the number of visitors they receive from Chikungunya active regions, principally viraemic visitors from India. Therefore this study represents a first attempt at creating risk stratified surveillance zones, which we believe could be usefully refined with the use of higher resolution climate data and more complete air travel data

    A climate for contemporary evolution

    Get PDF
    A new study of divergence in freshwater fish provides strong evidence of rapid, temperature-mediated adaptation. This study is particularly important in the ongoing debate over the extent and significance of evolutionary response to climate change because divergence has occurred in relatively few generations in spite of ongoing gene flow and in the aftermath of a significant genetic bottleneck, factors that have previously been considered obstacles to evolution. Climate change may thus be more likely to foster contemporary evolutionary responses than has been anticipated, and I argue here for the importance of investigating their possible occurrence

    Patterns of gene expression in schistosomes: localization by whole mount in situ hybridization

    Get PDF
    rom the identification of genes to the characterization of their functions and interactions. Developmental biologists have long used whole mount in situ hybridization (WISH) to determine gene expression patterns, as a vital tool for formulating and testing hypotheses about function. This paper describes the application of WISH to the study of gene expression in larval and adult schistosomes. Fixed worms were permeablized by proteinase K treatment for hybridization with digoxygenin-labelled RNA probes, with binding being detected by alkaline phosphatase-coupled anti-digoxygenin antibodies, and BM Purple substrate. Discrete staining patterns for the transcripts of the molecules Sm29, cathepsin L, antigen 10.3 and chorion were observed in the tegument cell bodies, gut epithelium, oesophageal gland and vitelline lobules, respectively, of adult worms. Transcripts of the molecules SGTP4, GP18-22 and cathepsin L were localized to tegument cell bodies and embryonic gut, respectively, of lung schistosomula. We also showed that Fast Red TR fluorescent substrate can refine the pattern of localization permitting use of confocal microscopy. We believe that method of WISH will find broad application, in synergy with other emerging post-genomic techniques, such as RNA interference, to studies focused at increasing our molecular understanding of schistosomes

    Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus

    Get PDF
    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and muCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research

    State of Emergency Planning in Oregon Communities Under 10,000 in Population - Preparing for Cascadia

    Get PDF
    88 pagesRecognition of the threat presented by the Cascadia Fault off the Coast of Oregon would necessitate a paradigm shift in Emergency Management planning in the Oregon. While great strides have been made, Oregon’s smallest communities, those under 10,000 in population remain vulnerable. One means of addressing vulnerabilities is through deliberate planning. This project will describe means of appropriate Emergency Response Planning, investigate the level of emergency planning present in small communities, and suggest a path toward addressing the planning demands the Cascadia Fault presents

    Non-stationary dynamo & magnetospheric accretion processes of the classical T Tauri star V2129 Oph

    Full text link
    We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes of the classical TTauri star (cTTS) V2129Oph. In this paper, we present spectropolarimetric observations collected in 2009 July with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT). Circularly polarised Zeeman signatures are clearly detected, both in photospheric absorption and accretion-powered emission lines, from time-series of which we reconstruct new maps of the magnetic field, photospheric brightness and accretion-powered emission at the surface of V2129Oph using our newest tomographic imaging tool - to be compared with those derived from our old 2005 June data set, reanalyzed in the exact same way. We find that in 2009 July, V2129Oph hosts octupolar & dipolar field components of about 2.1 & 0.9kG respectively, both tilted by about 20deg with respect to the rotation axis; we conclude that the large-scale magnetic topology changed significantly since 2005 June (when the octupole and dipole components were about 1.5 and 3 times weaker respectively), demonstrating that the field of V2129Oph is generated by a non-stationary dynamo. We also show that V2129Oph features a dark photospheric spot and a localised area of accretion-powered emission, both close to the main surface magnetic region (hosting fields of up to about 4kG in 2009 July). We finally obtain that the surface shear of V2129Oph is about half as strong as solar. From the fluxes of accretion-powered emission lines, we estimate that the observed average logarithmic accretion rate (in Msun/yr) at the surface of V2129Oph is -9.2+-0.3 at both epochs, peaking at -9.0 at magnetic maximum. It implies in particular that the radius at which the magnetic field of V2129Oph truncates the inner accretion disc is 0.93x and 0.50x the corotation radius in 2009 July and 2005 June respectively.Comment: MNRAS in press - 16 pages, 9 figure

    Ozone exposure, uptake, and response of different-sized black cherry trees

    Get PDF
    Differences in exposure, uptake and relative sensitivity to ozone between seedling, sapling, and canopy black cherry (Prunus serotina Ehrh.) trees were characterized during two growing seasons in north central Pennsylvania. Open-grown trees of all sizes received a similar amount of ozone exposure. Seedlings had greater foliar ozone injury, expressed as adaxial stipple and early leaf senescence, than larger trees, which was correlated with their higher rates of stomatal conductance and greater rates of ozone uptake. The higher stomatal conductance and ozone uptake of seedlings was proportional to their higher (less negative) predawn xylem water potentials. Seedlings appeared to have some ability to compensate for injury because their free growth habit reduced exposure per unit leaf area compared to larger trees whose leaves were exposed to ozone throughout the entire growing season

    Development of a Novel Biological Intervertebral Disc Scaffold

    Get PDF
    Back pain is a major public health issue in our society, and is strongly correlated with the degeneration of intervertebral discs (IVDs). Current therapies are conservative or surgical, and no attempt to regenerate the IVD. The first goal of our project is to create a fully decellularized bovine caudal IVD to be used as a scaffold on which to seed adult human stem cells in an attempt to engineer a healthy, replacement IVD for patients suffering from IVD degeneration and lower back pain. The goal of decellularization is to eliminate DNA content while retaining glycosaminoglycan (GAG) content. Eliminating DNA content will prevent a foreign body response by the host\u27s immune system once the IVD is implanted. GAG is responsible for forming interfibrillar bridges with collagen fibrils and thus assisting in resisting compressive and tensile forces. By retaining GAG content in our decellularized IVDs we will maintain structural integrity of the extracellular matrix. The IVDs closest to the base of the bovine tail were targeted, because they are similar in size and biochemistry to the human IVD. We use a mix of conventional methods including freeze thaw, sonication and agitation in a solution of sodium dodecyl sulfate (SDS) and ethylene diamine tetraacetic acid (EDTA). After decellularization, half of each IVD was placed in a tissue cassette and put formalin in preparation for histological analysis, and the other half was frozen prior to biochemical analysis (DMMB and PicoGreen assay). Our results thus far are promising in eliminating DNA content but show we have a large room for improvement in retaining GAG content

    Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph

    Full text link
    From observations collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we report the detection of Zeeman signatures on the low-mass classical TTauri star (cTTS) V2247Oph. Profile distortions and circular polarisation signatures detected in photospheric lines can be interpreted as caused by cool spots and magnetic regions at the surface of the star. The large-scale field is of moderate strength and highly complex; moreover, both the spot distribution and the magnetic field show significant variability on a timescale of only one week, as a likely result of strong differential rotation. Both properties make V2247Oph very different from the (more massive) prototypical cTTS BPTau; we speculate that this difference reflects the lower mass of V2247Oph. During our observations, V2247Oph was in a low-accretion state, with emission lines showing only weak levels of circular polarisation; we nevertheless find that excess emission apparently concentrates in a mid-latitude region of strong radial field, suggesting that it is the footpoint of an accretion funnel. The weaker and more complex field that we report on V2247Oph may share similarities with those of very-low-mass late-M dwarfs and potentially explain why low-mass cTTSs rotate on average faster than intermediate mass ones. These surprising results need confirmation from new independent data sets on V2247Oph and other similar low-mass cTTSs.Comment: MNRAS (in press) - 12 pages, 9 figure
    • …
    corecore