195 research outputs found
Doppler lidar results from the San Gorgonio Pass experiments
During FY-84, the Doppler Lidar data from the San Gorgonio Pass experiments were analyzed, evaluated, and interpreted with regard to signal strength, signal width, magnitude and direction of velocity component and a goodness parameter associated with the expected noise level of the signal. From these parameters, a screening criteria was developed to eliminate questionable data. For the most part analysis supports the validity of Doppler Lidar data obtained at San Gorgonio Pass with respect to the mean velocity magnitude and direction. The question as to whether the Doppler width could be interpreted as a measure of the variance of the turbulence within the Doppler Lidar System (DLS) focal volume was not resolved. The stochastic nature of the Doppler broadening from finite residence time of the particles in the beam as well as other Doppler broadening phenomenon tend to mask the Doppler spread associated with small scale turbulence. Future tests with longer pulses may assist in better understanding
Analysis of the NASA/MSFC airborne Doppler lidar results from San Gorgonio Pass, California
The NASA/MSFC Airborne Doppler Lidar System was flown in July 1981 aboard the NASA/Ames Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. At this region, the maritime layer from the west coast accelerates through the pass and spreads out over the valley floor on the east side of the pass. The experiment was selected in order to study accelerated flow in and at the exit of the canyon. Ground truth wind data taken concurrently with the flight data were available from approximately 12 meteorological towers and 3 tala kites for limited comparison purposes. The experiment provided the first spatial data for ensemble averaging of spatial correlations to compute lateral and longitudinal length scales in the lateral and longitudinal directions for both components, and information on atmospheric flow in this region of interest from wind energy resource considerations
Analysis of the NASA/MSFC Airborne Doppler Lidar results from San Gorgonio Pass, California
Two days during July of 1981 the NASA/MSFC Airborne Doppler Lidar System (ADLS) was flown aboard the NASA/AMES Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. The vertical and horizontal extent of the fast moving atmospheric flow discharging from the San Gorgonio Pass were examined. Conventional ground measurements were also taken during the tests to assist in validating the ADLS results. This particular region is recognized as a high wind resource region and, as such, a knowledge of the horizontal and vertical extent of this flow was of interest for wind energy applications. The statistics of the atmospheric flow field itself as it discharges from the pass and then spreads out over the desert were also of scientific interests. This data provided the first spatial data for ensemble averaging of spatial correlations to compute longitudinal and lateral integral length scales in the longitudinal and lateral directions for both components
Sporadicity and synchronization in one-dimensional asymmetrically coupled maps
A one-dimensional chain of sporadic maps with asymmetric nearest neighbour
couplings is numerically studied. It is shown that in the region of strong
asymmetry the system becomes spatially fully synchronized, even in the
thermodinamic limit, while the Lyapunov exponent is zero. For weak asymmetry
the synchronization is no more complete, and the Lyapunov exponent becomes
positive. In addition one has a clear relation between temporal and spatial
chaos, {\it i.e.}: a positive effective Lyapunov exponent corresponds to a lack
of synchronization and {\it vice versa}Comment: 9 pages + 3 figures (postscript appended uuencoded tar), IOP style
(appended uuencoded compress
Enhancing Iowa High School Students\u27 Transition to College
We present our studies of the transitions of Iowa science students from high school to post-secondary colleges. Our report summarizes information and impressions from dealing with thousands of new students arriving at our six colleges, along with meetings and discussions with high school science teachers to add their viewpoints into our considerations. Feedback from community college, four year college, and high school science teachers highlighted the following five study issues and needs for improving student transitions from high school to college science: 1) Better math preparation is needed; 2) More work with inquiry-based learning rather than with facts and memorization is needed in both secondary and post-secondary courses; 3) Students must become aware of career choices earlier; 4) Misconceptions by teachers at both levels must be minimized; and 5) High school and college science educators must improve intercommunication. To address these issues differently, our team invited Nobel Laureate Leon Lederman to be keynote speaker at the Iowa Science Teachers Fall Conference in October 2004. Dr. Lederman has campaigned for revamping the high school curriculum to have mathematics and the sciences integrated into a coherent, logical, interconnected whole, with conceptual physics first, to enable students to learn with a minimum of memorization. Feedback from high school science teachers has been very positive. Several Iowa high schools expressed interest in adopting this approach, and one Iowa high school has incorporated, at submission time, this innovation into their high school curriculum
Chaos in neural networks with a nonmonotonic transfer function
Time evolution of diluted neural networks with a nonmonotonic transfer
function is analitically described by flow equations for macroscopic variables.
The macroscopic dynamics shows a rich variety of behaviours: fixed-point,
periodicity and chaos. We examine in detail the structure of the strange
attractor and in particular we study the main features of the stable and
unstable manifolds, the hyperbolicity of the attractor and the existence of
homoclinic intersections. We also discuss the problem of the robustness of the
chaos and we prove that in the present model chaotic behaviour is fragile
(chaotic regions are densely intercalated with periodicity windows), according
to a recently discussed conjecture. Finally we perform an analysis of the
microscopic behaviour and in particular we examine the occurrence of damage
spreading by studying the time evolution of two almost identical initial
configurations. We show that for any choice of the parameters the two initial
states remain microscopically distinct.Comment: 12 pages, 11 figures. Accepted for publication in Physical Review E.
Originally submitted to the neuro-sys archive which was never publicly
announced (was 9905001
Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings
Model calculations have been performed on the spike-train response of a pair
of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory
couplings with time delay. The coupled, excitable HH neurons are assumed to
receive the two kinds of spike-train inputs: the transient input consisting of
impulses for the finite duration (: integer) and the sequential input
with the constant interspike interval (ISI). The distribution of the output ISI
shows a rich of variety depending on the coupling strength and the
time delay. The comparison is made between the dependence of the output ISI for
the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure
Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control
It is widely accepted that the complex dynamics characteristic of recurrent
neural circuits contributes in a fundamental manner to brain function. Progress
has been slow in understanding and exploiting the computational power of
recurrent dynamics for two main reasons: nonlinear recurrent networks often
exhibit chaotic behavior and most known learning rules do not work in robust
fashion in recurrent networks. Here we address both these problems by
demonstrating how random recurrent networks (RRN) that initially exhibit
chaotic dynamics can be tuned through a supervised learning rule to generate
locally stable neural patterns of activity that are both complex and robust to
noise. The outcome is a novel neural network regime that exhibits both
transiently stable and chaotic trajectories. We further show that the recurrent
learning rule dramatically increases the ability of RRNs to generate complex
spatiotemporal motor patterns, and accounts for recent experimental data
showing a decrease in neural variability in response to stimulus onset
Clinical mastitis in cows treated with sometribove (recombinant bovine somatotropin) and its relationship to milk yield.
Effect of sometribove (methionyl bovine somatotropin) on mastitis in 15 full lactation trials (914 cows) in Europe and the US and 70 short-term studies (2697 cows) in eight countries was investigated. In full lactation studies, sometribove (500 mg/2 wk) was given for 252 d, commencing 60 d postpartum. Although herds varied considerably, incidence of clinical mastitis within a herd was similar for cows receiving control and sometribove treatments. Relative risk analyses indicated no treatment effect, and percentage of mastitis during treatment was similar for control and sometribove groups. A positive linear relationship existed between peak milk yield and mastitis incidence (percentage of cows contracting mastitis or cases per 100 cow days); sometribove treatment did not alter this relationship. Increases in mastitis related to milk yield increase from sometribove or related to genetic selection were similar. When expressed per unit of milk, mastitis incidence declined slightly as milk yield increased; this relationship was not altered by sometribove. No effect on clinical mastitis was observed in 70 commercial herds utilizing sometribove for 84 d. However, effects were significant for stage of lactation and milk yield. Overall, studies represented a wide range of research and commercial situations demonstrating that sometribove had no effect on incidence of clinical mastitis during the lactation of treatment. Furthermore, sometribove did not alter typical relationships between milk yield or herd factors and incidence of clinical mastitis
- …