80 research outputs found

    Memory Effects and Scaling Properties of Traffic Flows

    Full text link
    Traffic flows are studied in terms of their noise of sound, which is an easily accessible experimental quantity. The sound noise data is studied making use of scaling properties of wavelet transforms and Hurst exponents are extracted. The scaling behavior is used to characterize the traffic flows in terms of scaling properties of the memory function in Mori-Lee stochastic differential equations. The results obtained provides for a new theoretical as well as experimental framework to characterize the large-time behavior of traffic flows. The present paper outlines the procedure by making use of one-lane computer simulations as well as sound-data measurements from a real two-lane traffic flow. We find the presence of conventional diffusion as well as 1/f-noise in real traffic flows at large time scales.Comment: 3 figure

    Rapid Steady State Convergence for Quantum Systems Using Time-Delayed Feedback Control

    Get PDF
    We propose a time-delayed feedback control scheme for open quantum systems that can dramatically reduce the time to reach steady state. No measurement is performed in the feedback loop, and we suggest a simple all-optical implementation for a cavity QED system. We demonstrate the potential of the scheme by applying it to a driven and dissipative Dicke model, as recently realized in a quantum gas experiment. The time to reach steady state can then reduced by two orders of magnitude for parameters taken from experiment, making previously inaccessible long time attractors reachable within typical experimental run times. The scheme also offers the possibility of slowing down the dynamics, as well as qualitatively changing the phase diagram of the corresponding physical system.Comment: 25 pages, 9 figures. Invited paper in "Focus on Coherent Control of Complex Quantum Systems", Eds. B. Whaley and G. Milburn. PS: Preview on OSX struggles with opening some of the figures with a lot of data in the

    Interference of Light in a Michelson-Morley Interferometer: A Quantum Optical Approach

    Get PDF
    The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-Morley interferometer (MMI) is often described in terms of classical optics. We show, in a pedagogical manner, how such features of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector. The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can exhibit the difference between classical and quantum-mechanical light

    Macroscopic Interference Effects in Resonant Cavities

    Get PDF
    We investigate the possibility of interference effects induced by macroscopic quantum-mechanical superpositions of almost othogonal coherent states - a Schroedinger cats state - in a resonant microcavity. Despite the fact that a single atom, used as a probe of the cat state, on the average only change the mean number of photons by one unit, we show that this single atom can change the system drastically. Interference between the initial and almost orthogonal macroscopic quantum states of the radiation field can now take place. Dissipation under current experimental conditions is taken into account and it is found that this does not necessarily change the intereference effects dramatically.Comment: 20 pages, 3 figure

    Non-commuting coordinates, exotic particles, & anomalous anyons in the Hall effect

    Full text link
    Our previous ``exotic'' particle, together with the more recent anomalous anyon model (which has arbitrary gyromagnetic factor gg) are reviewed. The non-relativistic limit of the anyon generalizes the exotic particle which has g=0g=0 to any gg.When put into planar electric and magnetic fields, the Hall effect becomes mandatory for all g2g\neq2, when the field takes some critical value.Comment: A new reference added. Talk given by P. Horvathy at the International Workshop "Nonlinear Physics: Theory and Experiment. III. July'04, Gallipoli (Lecce, Italy). To be published in Theor. Math. Phys. Latex 9 pages, no figure
    corecore