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The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-
Morley interferometer (MMI) is often described in terms of classical optics. We show, in a pedagogical manner, how such features
of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in
the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single
detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related
method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The
general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference
of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon
reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector.
The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can

exhibit the difference between classical and quantum-mechanical light.

1. Introduction

In 2006, Smoot and Mather shared the Nobel Prize in physics
“for their discovery of the black-body form and anisotropy
of the cosmic microwave background radiation (CMB)” [1].
These exciting discoveries were a breakthrough in modern
cosmology by the CMB anisotropy and the strong validation
of the black-body spectrum as predicted by the Big Bang
theory. The discovery of the black-body form of the CMB
spectrum and the high-precision measurement of the CMB
temperature (see e.g., [2]) relied heavily on the so-called Far-
Infrared Absolute Spectrophotometer (FIRAS) [3] on board
the Cosmic Background Explorer (COBE) [4, 5]. In short,
the FIRAS is a Michelson-Morley interferometer enabling a
comparison of the interference patterns between an observed
source and a reference black-body source on board the COBE
satellite.

In this paper, we will make use of Glauber’s theory for
photon detection [6, 7] (for a guide to the early literature
see e.g., [8-10] and for textbook accounts see e.g., [11-14])
together with elementary quantum mechanics to show how
the principles of the FIRAS can be understood in a straight-
forward manner using a quantum-optics frame-work. Inter-
ference phenomena in classical optics are described in terms
of classical electro-magnetic fields. Such classical fields can
be obtained in terms of expectation values of the observable
electromagnetic field operators using very special quantum
states, that is, coherent states (see e.g., [8—10]). Quantum
states with a fixed number of photons, like single-photon
states, have, however, no average electromagnetic field, and
the interference effects of such states therefore requires an
extension of classical considerations. The use of quantum
optics enables us to actually consider arbitrary quantum



states of the source and reference source, thereby extending
the realm of classical optics.

In Section 2, we recapitulate the principles of Glaubers
photon detection theory [6, 7] and the transformation prop-
erties of a quantum field in a beamsplitter (see e.g., [15—
17]). The Glauber theory of optical coherence is by now
well established and plays a central role in fundamental
studies of quantum interference effects of photon quantum
states (see e.g., [18-20]). In Section 3, we consider temporal
interference effects in the Michelson-Morley interferometer
for pure quantum states like single-photon states as well as
classical states corresponding to coherent states (see e.g., [8—
10]). In Section 4, we explain the principles of interference
of thermal light in the Michelson-Morley interferometer by
using only vacuum as the reference source and reproduce
known expressions. Here, we also show that the detection
intensity obtained with a vacuum reference source does not
depend on the details of signal quantum state considered,
thermal or not, but only on the average number of photons
present. In Section 5, we consider the full system with an
observed thermal source combined with a thermal reference
source. With the results obtained, we then recover the basic
principle of FIRAS and how it may be used as a high-
precision thermometer. In Section 6, we, finally, give some
concluding remarks.

Our presentation extends a recent presentation by
Donges [21] and illustrates, for example, that a quantum-
mechanical treatment directly leads to the concept of a
thermal coherence length without explicitly making use of
results from classical physics like the Wiener-Khintchine
theorem as in [21] and that any quantum state can be
considered.

2. The Michelson-Morley Interferometer

We consider the classical Michelson-Morley interferometer
(MMI) as illustrated in Figure 1, where the so-called temporal
coherence properties of the radiation field are probed (for
an early account see e.g., [22]). Figure 1 is a simplified and
schematic version of the FIRAS experimental setup. In order
to understand the appearance of interference effects in the
MMI, we first discuss the separate parts of the MMI before
we consider the full setup with the presence of a reference
beam.

2.1. Glauber’s Theory of Photon Detection. Let us outline
a simple, but not unrealistic, model of a photon detector
situated at the space-time point (x,t). In this simplified
model of a photon detection process [6, 7], the detection of
a photon is described by an annihilation of a photon at the
detector which modifies the initial state |in) as follows:

lin) — EM(%,¢)lin). (1)

Here the time-evolution is implemented in the Heisenberg
picture instead of a Schrodinger picture with space-and time-
dependent “wave-functions” for photons. The Heisenberg
picture seems actually to be mandatory since position-
dependent wave functions appear to be ill defined for
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F1GURE 1: Schematic drawing of the MMI setup considered in this
paper. The thick and diagonal line is representing a beam splitter
with a transmission coefficient T. The movable mirrors 1 and 2
are identical. The numbers in the parenthesis are referring to the
indices used to label the mode operators of the various light beams
as discussed in the main text. The signal port (1) and the local
oscillator port LO (0) are prepared with various quantum states,
like Fock states, coherent states, or states with random phases like
thermal states. The output mode (4) will not be considered in the
present paper.

massless particles with a nonzero spin (see e.g., [23]). The
observable electric field operator in Heisenberg picture,
E(% 1) = 3, En(%, 1), is then described in terms of a suitable
normal mode expansion, indexed by mode the number m, as
a superposition of positive and negative angular-frequency
contributions as follows:

-

En(%t) = ED (1) + ES) (£1), 2)

where Ev’(%,t) (Ey (x,t)) contains an annihilation (cre-
ation) operator for a photon with mode number m. Ac-
cording to the basic Born rule in quantum mechanics, the
probability to detect the system in a final state |out), after
the single-photon absorption process, is then proportional
to |(out| E®) (%, 1)|in)|2. Since the exact details of the final
states are, in general, unknown we sum over all possible final
states |out), that is, we consider >, | (out|E®) (x, t)]in) |> =
(Gn|EC)(x, t)EX) (£, 1))in), where use has been made of the
completeness of all possible final states, that is, >, [out)
(out| = 1.In general, we also have to consider not only a pure
initial quantum state but also a quantum state as described by
a density matrix. This leads to a description of the observed
intensity I which we write in the form

I=Tr [pnEO (%) ED (5,1)], (3)
where pi, is the density matrix describing the initial state.

Since we will not be interested in the absolute normalization
of the observed intensity I, we can neglect normalization
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constants that may enter into I. It is a remarkable fact
that an analysis of single-photon interference in a Young
interferometer using such a quantum-mechanical descrip-
tion of the photon detection process [24], as well as a proper
experimental investigation of single-photon interference [25,
26], is fairly recent in the history physics.

For reasons of clarity, we will now consider a typical plane
wave normal mode expansion of the electromagnetic field

observable E(x, t) in terms of a mode sum over wave-vectors

k and polarization-vector labels A, that is, we have for its
positive angular-frequency part that

TR ) hwg - X iwn (f—
EM (x’ t) - ’Z Ve slg,la];,lelk X—iw(t to)’ (4)
53

with wg = c|kl|. The annihilation operator a;,, and the cor-

kL
responding unit polarization vector s*]a, denotes the normal
mode considered. #, is a suitable initial-time parameter
which will be used, in a manner to be clarified below, to
express the dependence on various propagation times for the
optical paths as given in the MMI setup, a procedure as is well
known in classical optics (see e.g., [12, 22]). If the direction of
the light beams considered is well defined, the dependence of
the detector position x can be neglected in the expression for
I. In general, spatial modulations of the measured intensity
are expected [27, 28]. A theoretical analysis of such effects
along lines as discussed in the literature (see e.g., [29, 30])
will, however, not enlighten the issues we are addressing in
the present paper. V is a quantization volume that will be
allowed to be arbitrarily large at an appropriate late stage of
our calculations.

Since the dependence of normalization constants will
be irrelevant, and since we will only consider polarization-
independent optical devices, we make use of a scalar nota-
tion. We therefore suppress the wave vector and polarization
labels and with w = wr we write a(w) = ay such that
[a(w),at (w)] = Sue in terms of a discrete Kronecker delta
Oww - We also make use of the following convenient notation
[12] for the positive angular-frequency part of the electric
field at the position of the detector at time #:

E(+)(t) _ i%mwl/za(w)eigb(t)’ (5)

with the prescription >, 8w — [dww® ! in the infinite
volume limit V' — oo and where d is the number of space-
dimensions. Here ¢(t) = —w(t — 7) now denotes a mode-
dependent optical phase which explicitly takes the source-
detection propagation time into account in terms of the
time-delay 7, which will be evaluated in detail for the MMI-
setup below. In (5), the mode operator a(w) (= as(w) in
Figure 1) will later be expressed in terms of a superposition of
the input mode operators (= ao(w) and = a;(w) in Figure 1).
If the detector time f enters explicitly into the detection
intensity equation (3), we will perform a time average which
corresponds to a finite detector time-resolution window.

The corresponding time average of the observed intensity
I = I(t) will be denoted by (I), that is,

(I =

Tint/2
J (), ©6)

1
Tint -T2
where the time Tin of integration, as for example, the time
during which an actual measurement proceeds, is chosen
to be sufficiently large in comparison with typical time
scales of intensity fluctuations. The time-averaged observed
intensity (I) will in general, as we will see explicitly below,
be a function of a time-delay 7 depending on the actual
experimental set up.

For a finite quantization volume V, w can be regarded
to be discrete and it may be assumes that d = 1. When
appropriate we will, however, also consider d = 3 in order
to compare with related results in the literature [21, 22]. Our
main results will, however, not be very sensitive to the choice
of d. Using the same notation as above, a single-photon
quantum state | f), with an angular-frequency distribution
given by f = f(w), is then given by

) = SVbaf@)lie) = (fat)l0), ()

where |1,) = a'(w)|0) denotes a single-photon state with
angular-frequency w, normalized according to (1,/1,) =
dww' > and where |0) denotes the vacuum state. We also make
use of the notation (f,at) = (f*,a)" = 3, Vdwf(w)a'(w).
The state | f) above is an eigenstate of the number operator
N = S . af(w)a(w), that is, a Fock state, with, of course, an
eigenvalue corresponding to one particle present. Normal-
ization of the state | ) for d = 1 therefore corresponds to

1) =1=So0f*wf(w) = j: dol f@)|%  (8)

in the large-volume V' limit. In order to make our presenta-
tion quantitative, we will, for reasons of simplicity, consider
real-valued, single-photon, angular-frequency distributions
f(w) such that
1 (0 - )’
f(w) = NeXP<—202>a 9)

with a mean angular-frequency @ and width ¢ and where the
normalization constant N is given by

w/o
INJ? = “f(l + %L dxe"z). (10)

This choice of frequency distribution makes it possible
to actually carry out all relevant expressions analytically.
In obtaining the properly normalized expression Equation
(9), we keep w = 0. It may, however, sometimes be
possible to extend the range of angular frequencies to
arbitrarily negative values in (8), so that |IN|? = o/,
with an exponential small error, which makes some of
the expressions more tractable and transparent. With our
choice of beam parameters below, it turns out that such an



approximation plays only a minor role with regard to our
numerical evaluations where we make use of w > 0. It is now
clear that (f |E(x,1)] f) =0, that is, a single-photon state has
no average electromagnetic field.

There are, however, quantum states with a nonzero ex-

pectation value of the electromagnetic field operator E(x,1)
are like coherent states. Conventional coherent states | f )., as
expressed in terms of the single-photon distribution f, can
for example, be obtained using a multimode displacement
operator (see e.g., [8-10]), that is,

| ), = eFa)=U" a0y = = 1N26FaD 0y (11)
such that

a(w)| f). = 6w)"* f(@)] f) (12)

and hence

AFINTf), = Dbl fw)|. (13)

We also observe that the expectation value of the single-
component electromagnetic field operator E®)(¢) as defined
in (5) is given by

FIEDDE D] f), =D 00w f(@)e®D, (14

which therefore corresponds to a classical electromagnetic
field. Classical interference effects as expressed in terms of
such expectation values, which are nonlinearly dependent of
the quantum states considered, are, of course, not directly
linked to quantum-mechanical interference effects which are
linearly dependent of quantum states. The use of quantum
optics clarifies the connection between these views on
interference effects.

The input quantum states to be considered in Figure 1,
will, of course, correspond to the replacements a(w) —
ap(w) and a(w) — a;(w), respectively in the definition of
the states considered above.

2.2. Transformation in the Beam Splitter. Next, we consider
a dispersionless beam splitter with frequency-independent
transmittance T and reflectance R. If we assume a prefect
beam splitter, where all light is either reflected or transmitted,
we have R+ T = 1. The input annihilation operators ao(w)
and a; (w) of the beam splitter will then transform according
to (see e.g., [15-17])

a(0) = VTag(w) + ivRa; (w),
(15)
a3(w) = VTa;(0) + iv/Rag(w),

where ag(w) and a;(w) are the LO and signal port mode
annihilation operators, and a,(w), a3(w) the output anni-
hilation mode operators corresponding to the transmitted
and reflected modes, respectively. The transformation rules
for the corresponding creation operators follows from (15)
by Hermitian conjugation. The two independent sets of
output annihilation and creation operators will then obey the
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required canonical commutation relations [a;(w), a;r (w)] =
[a3(w), ag (w)] = 1. The phase shift between the transmitted
and reflected part, described by the complex numbers in
(15) will play an important role below as is also the case
in the famous Hong-Ou-Mandel two-photon correlation
experiment [31] and related investigations (see e.g., [32—
35]).

A light beam arriving at the beam splitter after being
reflected in the mirrors 1 and 2 will, in general, be phase
shifted, that is, expressed in terms of mode operators this
process corresponds to the propagation time replacements in

(5):

@ (@)Y — ar(w)e®,
. _ (16)
a3(0)e?) — az(w)e',

due to difference in optical path lengths with ¢, = —w(t —
72), ¢3 = —w(t — 13) in terms of time-delays 7, and 73.
The reflections at the identical mirrors in the MMI setup
(Figure 1) will also introduce phase-shifts, but they are equal
for the two light beams and can therefore be neglected all
together. A light beam passing through the beam splitter after
reflection at the mirrors will, again, transform according
to (15) and we therefore, finally, obtain an expression for
the mode operator describing incident light on the photon
detector in (5), that is,

as(w)e?) — Tay(w)e®*® + ivRas(w)e®*")
- ao(w)<Tei¢z(t) _ Rei¢3(‘)) (17)
+ al(w)(i\/ TRe*" + i TRei¢3(’)).

For reasons of clarity, we will consider a 50/50 beam splitter,
which also makes interference effects dependent only on the
phases present, that is, we make the choice T = R = 1/2. The
corresponding electromagnetic field operator to be used in
Glauber’s theory of photon detection, is therefore given by

ED () = i35 Vowa'”?

x (ag(w) (90 — &) (18)

+iay (w) (ei‘pzm + ei%(t)))'

3. Interference of Fock States and
Coherent States

Let us now specifically consider single photons in the signal
and local ports, that is, the following initial Fock state as
follows:

lin) = [ ) ® | fio)> (19)

with single-photon angular-frequency distributions accord-
ing to (9). In the numerical results to be presented, we will
use the same spectral widths ¢ but with @ — @, = 30 for
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the signal portand @ — wj, = 3.150 or @}, = 2.85¢ for the
local oscillator port. We now observe that the action of the
electromagnetic field operator E®)(t), as given by (18), on
this initial state is given by

EM(t)]in) = iZ%Swwm
w

(i) |1

+ fio@)e®O (1 - &%) | £) © 10)),
(20)

where we have made use of the fact that ¢3(¢) — ¢2(t) =
w(73 — 72) = w7, which now defines the optical time-delay .
The nonnormalized state E®*)()|in) describes an entangled
combination of the two orthogonal state vectors [0) ® | fi,)
and | ;) ® |0) corresponding to the absorption of one photon
from the signal source or from the local oscillator, respec-
tively. Apart from an overall normalization constant, each
expansion coefficient, that is, the corresponding probability
amplitude, contains information about the single-photon
interference for the signal or the local oscillator photon,
respectively. As we have discussed above, the probability for
the detection of one photon will, according to Glauber’s
theory of photon detection, be proportional to the matrix
element (in|EC)(£)E®)(t)]in), that is, the absolute modulus
square [E®)(£)]in)|? of the nonnormalized state EC)(¢)]in).
A time average over the time t according to (6) with Tin >
1/0 leads to a Dirac 6 (w — w’)-function and therefore makes
any double-sum over frequencies into a single-sum. In the
large-volume limit and for d = 1, we then obtain

1

(1) = 5

J dw2m
0

x (@] (@) |>(1 + cos ) (21)

+| fio(w)|*(1 - coswr)).

The single-photon detection intensity (I)(7) is then a sum
of two single-photon interference patterns. We notice the
appearance of a relative minus sign in the local oscil-
lator photon contribution, which has its origin in the
relative phase-shift between the transmission-reflection and
transmission-transmission coefficients of a beamsplitter
alluded to in connection with (15) and (17). If ws = @}, then
the detector cannot distinguish between a photon from the
signal or the local source with the same spectral widths o and
the two interference effects will exactly cancel against each
other with the result that (I) (7) will be independent of 7.

If w, wj, > 0, then, within a good numerical approxima-
tion, we can first replace the linear w dependence in (21) with
;s and @), in front of the corresponding angular-frequency
distributions, and then extend the integration to include

1.1 T T T T

(D(1)/(1)(0)

1.05

0.95

0.9 .

T0

FIGURE 2: The normalized single-photon intensity (I)(7)/(I)(0)
as a function of the dimensionless time-delay 7o for the case of
single-photon states in the signal and the LO ports with the same
spectral width o but with different mean frequencies. Two different
examples are plotted with w; = 30: w;, = 3.150 with (solid line) or
@}, = 2.850 (dashed line). The asymptotic values of (I)(7)/{I)(0)
can be obtained from the expression (22) in the main text, that is,
(1 + @5/ @5)/2.

arbitrarily negative angular-frequencies. One then finds that
(IV(0) =~ 2mws/ T and

N(x) _ 1(1+@

IY0) 2 W,

- (22)
e olTA (cos TWs — b cos T@o> ) ,
Ws
where the interference effects are exponentially sensitive
to the spectral width ¢ of the single-photon angular-
distributions in a fashion similar to the spectral width
dependence in the famous Hong-Ou-Mandel two-photon
experiment [31]. The asymptotic value of (I)(7)/(I)(0) is
given by (1 + @,/@;)/2. In Figure 2, we exhibit (I)(7)/(I)(0)
according to (21) with the choice as in (19). With a given
reference distribution | fj,(w)|? of the local oscillator one
can, for example, now in principle infer the common
spectral width o of the single-photon sources as well as the
corresponding angular-frequency @;. A related experimental
situation is actually discussed in [36] for a general single-
photon state, that is, not necessarily a pure quantum state.
In the case of coherent states in the signal and local ports,
with single-particle state angular-frequency distributions
fi(w) and fi,(w) as above, (20) is now modified according
to

E®(#)]in) = iZ%&owl/z
w

X (i]’s(w)ei"’Z(t) (1 + e"‘”)

+ﬁ0(w)ei¢z(t)(l _ eiwr)) |f5>c ® |flo>cy
(23)

which is not an entangled state. This is so since the removal
of a photon from a coherent state does not change the state
since it actually contains infinitely many photons, that is,



FiGUre 3: The normalized intensity (I)(7)/(I)(0) as a function of
the time-delay 7o for the case of coherent states as generated by
the same single-photon states as in Figure 2. Two different examples
are plotted with w, = 30: w;, = 3.150 with (solid line) or @;, =
2.850 (dashed line). The asymptotic values of (I)(7)/{I)(0) are as
in Figure 2.

a(@)| f)e = (bw)”? f(w)|f). according to (12). The inten-
sity (I)(7) according to (21) is, for real-valued single-photon
distributions f;(w) and fj,(w), therefore replaced by

(I)(7) = 2111 J: dwan(|fs(w) 12(1 + cos wT)

+ | fiolw) |*(1 = cos wr) (24)

=2f(w) fio(w) sin a)'r),

which now contains an additional interference contribution
as compared with (21). In Figure 3, we exhibit (I)(7)/{I)(0)
with coherent states generated by the same choice of single-
photon states as in Figure 2. The interference pattern is,
as in Figure 2, sensitive to the actual angular-frequency
distributions. With a given reference distribution | fj,(w)|?
of the local oscillator, one can now infer the common
spectral width ¢ of the coherent state sources as well as the
corresponding angular-frequency w;. By a comparison with
Figure 2, we conclude that the MMI setup is sensitive to the
actual form of the initial quantum states despite the fact that
we are only considering single-photon detection processes.
With the same approximations leading to (22), we find an
additional contribution to (I)(7)/{I)(0), that is,

<I>(T) ~ l ( (1 + @) (1 _ 6—852/452—5212/4 Sian)

(o) 2 [0

_ (25)
_ @ _
e 0T/ (cos T, — = cos Ta)]o) ) ,
S
with §@ = (w; — @j,) and @ = (@}, + w;)/2. In particular, and
more important, we notice that when @ = w;, = @, we can
write

—021%/4

()

(I1)(0)
which now explicitly depends on 7 in contrast to the initial
Fock state considerations above in which case (I)(7) =~

(I1)(0).

sin 7w, (26)
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4. Interference of Thermal Light in
the Michelson-Morley Interferometer

4.1. Thermal Light. For the readers convenience, let us first
outline a simple and quantum mechanical description of
thermal black body radiation at an absolute temperature T.
Black body radiation is, basically, light with random phases.
For a single mode with angular-frequency w and if |n) =
at(w)"|0)/+/n! denotes a n-photon state, the density matrix
describing the thermal light is given by

p(@) = > pul(w)|ne) (nel, (27)
n=0

in terms of the Bose-Einstein distribution:

7w, T) )” 1

pnl@) = <1+ﬁ(w, ) 1+ . T) (28)

with
1

i, T) = exp(fiw/ksT) — 1°

(29)
The state p(w) corresponds to an extreme value of the
von Neumann entropy S, that is,

S=—kgT Tr[p(w)Inp(w)], (30)
subjected to the constraints (see e.g., [13, 22]):

Tr[p(w)] = 1,
(31)
Tr[a*(w)a(w)p(w)] =7(w, T).

The random, or chaotic, nature of the quantum state p(w)
corresponds to a phase-independent Glauber-Sudarshan
P (a)-representation (see e.g., [37-42]) in terms of a coher-
ent state, that is,

pl@) = | da(@)la) (al, (32)
using a single-mode coherent state |a) = exp(aa’(w) —
a*a(w))|0). For thermal light, one finds that

1 la|?
D — _
P = o) eXp( () T))’ (33)

which obeys the normalization condition:
Tr[p(w)] = sza!P(a) =1, (34)
as well as
Tr[a! (w)a(w)p(w) | = szocP((x)I(xlz = 7w, T). (35

A multimode system at thermal equilibrium is then
described in terms of a tensor product p(T) = ®,p(w),
where we have performed the replacement a« — a(w) in (32)
and (33). The Glauber-Sudarshan £ («)-representation for
the state p(T) is now, in particular, useful in our considera-
tions since the response in a single-photon detector can be
obtained immediately from the previous results for coherent
light using an average procedure.
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4.2. Thermal Light in the Signal Port and Vacuum in the Local
Oscillator Port. We are now in the position to consider a
density matrix describing a system where we have thermal
light in the signal port and vacuum in the LO port, that is,
the initial density matrix pj, of the total system is given by

pin = p(T) ® (10)(01)y,. (36)

By making use of [25], with f{(w) — a(w) and fio(w) — 0,
and then performing an average over a(w) according to (35),
we immediately obtain the following result:

1

(D) = )

J dw2nw'n(w, T)(1 + cos wT), (37)
0

in d space dimensions.

In passing, we notice the important fact that (37)
is, in fact, valid for any physical quantum state of the
form (36), where p(T) is replaced with any density matrix
p(w) not necessarily thermal, due to the generality of the
Glauber-Sudarshan P(«)-representative equation (32). The
interference effects as exhibited by the MMI setup, therefore,
actually only depends on the, in general, angular-frequency
dependent mean number Tr[at(w)a(w)p(w)] = n(w) and
not on other features of the actual quantum state p(w).

By a straightforward change of the variable of integration
in (37), and with a = tkgT/h, we then find for a thermal
quantum state p(T) that

(1) 1 1 j” (xd cos(ax) )

= | dx ) (38
1) z[ 7@ Jo P\ exp - 1 Y
where J(d) can be expressed in terms of gamma and Rie-
mann’s { functions, that is,

J(d) =T(1+d)(d+1) :r(1+d)2#. (39)
n=1

Particular values are J(1) = n%/6 and J(3) = n*/15. In
the case of d = 3, we, therefore, recover the well-known
expression for (I)(7)/(I)(0) [22] as also discussed in [21].
In, for example, d = 3 it is actually possible to carry out
the relevant integral in the expression equation (38) for
(I(7)/(I)(0) analytically with the result

(N(r) 1 2+cosh(2am) 3
() 2 [1 " 15( sinh (am)* (arr)4>]' (40)

Equation (40) shows that interference effects have a
power-law sensitivity for larger a. In Figure 4, we show
(IN(7)/(I)(0) for varying values of a in the case with d = 3
and one infers a characteristic coherence length /. of thermal
light in the MMI of the form:

he
I ~ I.SkaT, (41)

as also discussed in [21].

(I (T)/(1)(0)
0.8

0.6

0.4 |

0.2

0 0.5 1 1.5 2 2.5 3
TkB T/h

FIGURE 4: The normalized intensity (I)(7)/{I)(0) as a function of
a = tkgTo/h for the case of thermal light in the signal port and
vacuum in the LO port and for d = 3. We infer a characteristic
thermal coherence time 7. in terms of a ~ 1.5 (dashed vertical line),
thatis, 7. =~ 1.5h/kpT.

5. Thermal Light in the Signal and Local Ports

As we have seen above, with a vacuum in the LO port and
with a signal thermal source the single-photon detection
process exhibits an interference pattern. We now investigate
what happens if we have thermal light with a temperature T
in the LO port and thermal light with temperature T) in the
signal port. For this setup, the corresponding initial density
matrix becomes

pin = p(T1) ® p(To). (42)

By making use of this density matrix as well as the same
methods as described in Section 4.2 by performing indepen-
dent averages over fi(w) and fj,(w) in (24) according to
(35), we immediately obtain, in the large-volume limit, the
following result:

1
2 Tint

(I)(1) = J: dww®2n (7w, T;)(1 + cos wt)
+1(w, Ty)(1 — coswt)).
(43)

In obtaining this result, we notice that the last term in
(24), suitably extended to complex-valued f;(w) and fi,(w),
averages to zero due to the chaotic nature, that is, phase-
independence of thermal light according to (32) and (33).
The relative intensity then takes the form (d = 3) as follows:

D) 1(, (To)*
1)(0) 2<1+<T1) )

15 (® X3
* 2t Jo dxexp(x) -1 (44)

X (cos(alx) - (3:0)4605(11096)))
1
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I
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Tp = 0.99T; | 0=

I
I
0.98 :
|
I
I

0.96 1 1 1 1 1

0 0.5 1 1.5 2 25 3
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FIGURE 5: The same as in Figure 4 but with thermal light in both
ports with T} = 1.01T, (upper curve), T; = 0.99T, (lower curve),
and T; = Tj (solid line). The vertical dashed line corresponds to the
thermal coherence length I. = ct, with 7.kgT/h ~ 1.5.

where ag = kg To/h and a; = tkgT)/h. The integrals in (44)
can, again, be solved analytically in a fashion similar to the
integral in (38), that is,

(N(r) 1 To 4 =2+ cosh(2a7)
(1)(0) _2<1+(T1> (1 b (@) ))
(45)
15 (2 + cosh(2a1n)>
+ — - a4 |
2 sinh (a;7)

Due to the presence of hyperbolic functions in (45), we
observe that (I)(7)/{I)(0) approaches its asymptotic value
(1 + (To/T)/2 exponentially fast as a function of the
time-delay 7 in contrast to the power-law dependence in
(40). It is now of interest to study the behavior of (45)
when the temperatures T and T; of the local oscillator and
signal, respectively are varied. In Figure 5, we exhibit the
interference when Tj is slightly smaller or larger than T; as
a function of the parameter tkgTy/h for d = 3. The corre-
sponding interference, of course, disappears when the two
temperatures are equal. The sensitivity of the interference
pattern with regard to the difference in temperatures of the
source and the reference temperature, that is, of the local
source, constitutes the basic ingredient of the FIRAS setup.
We also observe that the coherence length I for this MMI
setup is roughly the same as in Section 4.2 since the two
temperatures of the source considered are close to each other.

6. Conclusions and Final Remarks

We have seen that the interference of thermal light in the
Michelson-Morley interferometer can be described, in a
straightforward manner, by making use of Glauber’s theory
of photon detection and elementary quantum theory of
the electromagnetic field. Furthermore, we have seen the
emergence of a natural coherence length I, =~ 1.5hc/kgT
of thermal light in the MMI. The result for thermal light
in both the signal and the local oscillator ports shows that
the interference pattern is sensitive to the difference in
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temperature of the two sources. This is the basic principle
used by the FIRAS on board the COBE satellite in order
to perform high-precision measurements of the temperature
and the spectrum of the cosmic micro-wave background
radiation.

It may first appear surprising that nonmonochromatic
and chaotic/thermal light, with random phases, exhibits
interference effects since it can be argued that a quantum
state with a fixed number of photons has an undetermined
“quantum phase” (see e.g., [43-48]). A mixed quantum
state of such photon-number eigenstates therefore have no
intrinsic and well-defined phase. As we, however, have seen
the interference effects are naturally obtained in terms of the
phase-dependent normal-mode expansion of the quantized
electromagnetic field and its corresponding timeevolution
rather than in terms of a Schrédinger picture and possible
phases of quantum states (see e.g., the comments in [49]).

Since we have been considering initial quantum states
in terms of a fixed number of photons as well as “classical”
states, corresponding to coherent states with an infinite num-
ber of photons present, a quantum-mechanical language is
mandatory. The signal and local ports of the MMI setup
corresponds to independent input sources. It is, of course,
a well-known experimental fact that independent photon
sources can give rise to interference effects (see e.g., [50—
55]). Despite the fact that such interference effects are well
established, the interpretation of them can, nevertheless,
gives rise to interesting issues regarding the very fundamental
aspects of the quantum-mechanical world (see e.g., [56])
when considering, in particular, interference effects using
single-photon sources.

We have seen that for multimode systems the quantum
nature of these independent sources actually affects the
nature of the single-photon intensity measurements. We have
already mentioned that the angular-frequency distribution of
asingle photon can be measured using a similar experimental
setup as the MMI considered in the present paper [36]. With
a vacuum state in the local oscillator port and a single-
photon signal angular-frequency distribution f(w) of the
form considered in (9), one finds, using (21), that

(H(r) _
(o)

(1 +e T4 cos TES). (46)

N | —

We conclude by noticing that a characteristic exponential
behavior as in (46) for single-photon interference has
recently been observed by measuring the photoluminescence
signal of a single quantum dot [57] using a Michelson-
Morley interferometer (for a related study of interference
effects of dissimilar photon sources, see [58]).
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