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1 INTRODUCTION

There are few systems in physics which exhibit a rich structure of phase transitions

that can be investigated under clean experimental conditions and which at the same time

can be studied by exact theoretical methods. Recent developments in cavity quantum

electrodynamics, and in particular the use of beams of highly excited Rydberg atoms and

resonant microcavities, has opened up an avenue to study one class of such systems in

great detail. The micromaser system, which is a remarkable experimental realization of

the idealised system of a two-level atom interacting with a second-quantised single-mode

electromagnetic field, provides us with such an example (for reviews and references see

e.g. [1]). The microlaser [2] is the counterpart in the optical regime.

Many features of the micromaser are of general interest. It can, for example, be argued

that the micromaser system is a very simple illustration of the conjectured topological

origin of second-order phase transitions [3], as will be briefly discussed later in the present

paper. Various aspects of stochastic resonance can, furthermore, be studied in this system

[4]. The micromaser also illustrates a remarkable feature of non-linear dynamical systems:

turning on randomness may lead to an increased signal-to-noise ratio [5, 6].

The basic theory of the micromaser system as developed in Refs.[7, 8], which is limited

to the case a = 1 and ∆ω = 0 only, suggests the existence of various phase transitions in

the large N limit. Here N is the number of atoms passing the cavity in a single photon

decay time. A natural order parameter is then the average photon “density” 〈n〉/N ,

where 〈n〉 denotes the average photon number with respect to the stationary micromaser

photon distribution. By making use of an approximative approach in terms of a Fokker-

Planck equation, details of the various transitions were worked out, like tunnelling times

between the various phases (see e.g. [7, 8]). An exact treatment, in the large N limit,

of the micromaser phase structure and the corresponding critical fluctuations in terms

of a conventional correlation function of either the atoms leaving the micromaser or the

photons in the cavity has been given in Refs.[9], where deviations from the Fokker-Planck

equation approach were reported. It is of great interest to notice that spontaneous jumps

in 〈n〉/N and large correlation lengths close to micromaser phase transitions have been

observed experimentally [1, 10]. Most of the experimental and theoretical studies have,

however, been limited to the case a = 1 and ∆ω = 0. It is the purpose of the present

paper to study the phase structure of the micromaser system and extend the results of

Refs.[9] to the general case with a 6= 1 and ∆ω 6= 0 using methods which are exact in the

large N limit. As will be argued below, several new intriguing physical properties of the
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micromaser system are then unfolded. A short presentation of the main results of this

paper has appeared elsewhere [11].

The paper is organised as follows. In Section 2 the theoretical framework is outlined,

and a rapidly convergent large N limit is derived for the stationary micromaser photon

probability distribution. The phase structure is investigated in Section 3 and the order

parameter 〈x〉 is discussed in more detail in Section 4. The correlation length is analyzed

numerically in Section 5 as well as in terms of various approximation schemes. The results

of extensive numerical investigations of trapping states are presented in Section 6. Final

remarks are given in 7.

2 THE PROBABILITY DISTRIBUTION

The pump atoms, which enter the cavity, are assumed to be prepared in an incoherent

statistical mixture, i.e. the initial density matrix ρA of the atoms is of the diagonal form

ρA =

(
a 0

0 b

)
, (1)

where a + b = 1. This form of the atomic density matrix is not of the most general form,

but it leads to the possibility of an exact analytical treatment provided the photon field

density matrix also is diagonal, which from now on we assume. The rate R of the injected

atoms is assumed to be high enough to pump up the cavity, i.e. R > γ = 1/Tcav, or N > 1

in terms of the dimensionless flux variable N = R/γ. Here Tcav is the decay time of the

cavity and hence γ is the typical decay rate for photons in the cavity. Furthermore, let τ

denote the atomic transit-time through the resonant photon cavity.

For our purposes the continuous time formulation of the micromaser system [12] is

suitable as a theoretical framework. Each atom is assumed to have the same probability

R dt of arriving in an infinitesimal time interval dt, i.e. they are Poisson distributed.

Provided the interaction with the radiation field of the cavity takes less time than this

interval, i.e. if τ � dt, we may consider the atomic transitions to be instantaneous. The

vector p formed by the diagonal density matrix elements of the photon field then obeys

the master equation [12, 9]

dp

dt
= −γLp , (2)
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where

L = LC − N(M − 1) . (3)

Here LC describes the damping of the cavity (see e.g. Ref. [13] for an excellent account),

i.e.

(LC)nm = (nb + 1)[ nδn,m − (n + 1)δn+1,m ] + nb[ (n + 1)δn,m − nδn,m+1 ] , (4)

and M = M(+)+M(−) has its origin in the Jaynes-Cummings (JC) model [14, 9] where

M(+)nm = bqn+1δn+1,m + a(1 − qn+1)δn,m , (5)

and

M(−)nm = aqnδn,m+1 + b(1 − qn)δn,m . (6)

We observe the unitarity constraints

∞∑
n=0

Mnm = 1 ,

∞∑
n=0

(LC)nm = 0 . (7)

The stationary solution of Eq. (2) is well known [7, 12] and is given by

p̄n = p̄0

n∏
m=1

nb m + Naqm

(1 + nb) m + Nbqm
, (8)

where qm ≡ q(m/N) and

q(x) =
x

x + ∆2
sin2

(
θ
√

x + ∆2
)

. (9)

Here we have defined the natural and dimensionless parameter

∆2 = δ2/N , (10)

where

δ = ∆ω/2g , (11)
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since it is always this particular combination of ∆ω, N and g which is involved. g is

the single-photon Rabi frequency at zero detuning of the JC model [14]. nb is the initial

mean value of thermal photons in the cavity. Furthermore, the probability is expressed

in terms of the scaled dimensionless pump parameter θ = gτ
√

N . The overall constant

p̄0 in Eq. (8) is determined by the normalisation condition

∞∑
n=0

p̄n = 1 . (12)

In passing, we observe that at thermal equilibrium, i.e. when

a

b
=

nb

1 + nb
, (13)

the probability distribution in Eq. (8) is in fact, as it should be, a Planck distribution.

This particular distribution depends only on nb, which is the corresponding mean value

photon number, i.e.

〈n〉 ≡
∞∑

n=0

np̄n = nb . (14)

If Eq. (13) is not fulfilled then p̄n describes a stationary photon distribution which there-

fore can be far from thermal equilibrium.

2.1 Large N Expansion

The large N behaviour of the stationary photon probability distribution p̄n as given

by Eq. (8) is difficult to handle. In order to obtain an appropriate expression which is

rapidly convergent in the large N limit, and which neatly expresses the various micromaser

phases, we can make use of a Poisson summation technique [15]. It is then natural to define

the scaled photon number variable x, defined by x = n/N . The stationary probability

distribution Eq. (8) then takes the form

p̄(x) = p̄0

√
w(x)

w(0)
e−N V (x) , (15)

where

V (x) =
∞∑

k=−∞
Vk(x) . (16)
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The effective potential V (x) is expressed in terms of

Vk(x) = −
∫ x

0

dν ln[ w(ν) ] cos(2πNkν) , (17)

where

w(x) =
nb x + a q(x)

(1 + nb) x + b q(x)
. (18)

In this expression for w(x), q(x) is given by Eq. (9). We stress that Eq. (15) is exact.

In the large N limit Eq. (15) can be substantially simplified since the Vk(x)-terms in

Eq. (17) do not contribute in this limit for k 6= 0 . It is therefore the nature of the global

minima of V0(x) which determines the probability distribution and the micromaser phase

structure, apart from the zeros of w(x) which correspond to trapping states [16]-[20]. The

physics of trapping states will be discussed in Section 6.

2.2 The Thermal Distribution

If the only global minimum of V0(x) occurs at x = 0, we can expand the effective

potential V0(x) around the origin. A straightforward expansion of V0(x) then leads to

V0(x) = x ln

[
1 + nb + bθ2

eff

nb + aθ2
eff

]
+ O(x2) , (19)

where we have defined an effective pump θ-parameter

θ2
eff = θ2 sin2(θ∆)

(θ∆)2
. (20)

Eq. (19) leads to the following properly normalised thermal photon probablity distribution

p̄n =
1 + (1 − 2a) θ2

eff

1 + nb + b θ2
eff

(
nb + a θ2

eff

1 + nb + b θ2
eff

)n

, (21)

which is convergent provided

θ2
eff (2a − 1) < 1 . (22)

Eq. (21) is exact in the large N limit, and corresponds to an increase of the temperature

in the cavity. If a < 1/2 + ∆2/2 the distribution Eq. (21) is therefore always valid. If
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∆ = 0 convergence requires that θ2 (2a − 1) < 1, i.e. θ has to be sufficiently small when

a > 1/2. We find that Eq. (21) also can be used to compute expectation values for

finite N , even though the accuracy then depends on the actual micromaser parameters.

When the micromaser is described by the thermal distribution in Eq. (21), we say that

the system is in the thermal phase.

2.3 The Gaussian Distribution

If, on the other hand, non-trivial saddle-points of V0(x) exist, Eq. (15) can be written

in the form

p̄(x) =
∑

j

p̄j(x) , (23)

where
∑

j is a sum over all saddle-points corresponding to minima of V0(x), and where

p̄j(x) is p̄(x) for x close to the saddle-points x = xj . The saddle-points, x(θ), are deter-

mined by V ′
0(x) = 0, since, as noted above, the Vk(x)-terms in Eq. (17) for k 6= 0 do not

contribute in the large N -limit. For a fixed a and ∆ we then have

(2a − 1) sin2
(
θ
√

x(θ) + ∆2
)
− (x(θ) + ∆2) = 0 , (24)

corresponding to w(x(θ)) = 1. This equation is independent of nb and has non-trivial

solutions only when a ≥ 1/2 + ∆2/2. It is clear that a, ∆ and x(θ) at a saddle-point are

restricted by the condition

x(θ) + ∆2 ≤ 2a − 1 , (25)

for any θ. The saddle-points x = x(θ) can conveniently be parametrically represented in

the form [9]

x(φ) + ∆2 = (2a − 1) sin2 φ , (26)

θ(φ) =
1√

2a − 1

φ

| sin φ| , (27)

with

φ ≥ φ0 ≡ arcsin(|∆|/√2a − 1) . (28)
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We define branches of φ, labelled by k = 0, 1, 2, ... such that φ varies in the intervals

φ0 + kπ ≤ φ ≤ (k + 1)π − φ0 , k = 0, 1, 2, ... . (29)

Except for the first branch k = 0, the saddle-points corresponding to each of these

branches are double-valued, that is, there are at most two values of x(θ) for a given

θ. The first branch k = 0 is single-valued.

For a given a, ∆ and θ, let x = xj(a, ∆, θ) ≡ xj be a saddle-point corresponding to a

minimum of V0(x). The equilibrium distribution in the neighbourhood of this minimum

value xj is then given in the following Gaussian form

p̄j(x) =
Tj√
2πN

e−
N
2

V ′′
0 (xj)(x−xj)2 . (30)

Here Tj is determined by the normalisation condition for p̄(x), i.e

Tj =
e−NV0(xj)∑

m

e−NV0(xm)/
√

V ′′
0 (xm)

, (31)

and where

V ′′
0 (x) =

(2a − 1)2

a + nb(2a − 1)

q(x) − xq′(x)

x2
. (32)

For the given parameters, the sum in Eq. (31) is supposed to be taken over all saddle-

points corresponding to a minimum of V0(x), i.e. all saddle-points corresponding to

V ′′
0 (x) > 0. If x = xj does not correspond to a global minimum for the effective po-

tential V0(x), then Tj is exponentially small in the large N limit. If x = xj corresponds

to one and only one global minimum, we can neglect all the terms in the sum in Tj but

m = j, in which case Tj is reduced to Tj =
√

V ′′
0 (xj). In the neighbourhood of such a

global minimum xj the probability distribution in Eq. (30) is therefore reduced to

p̄j(x) =

√
V ′′

0 (xj)

2πN
e−

N
2

V ′′
0 (xj)(x−xj)2 . (33)

which is, strictly speaking, only valid in a sufficiently small neighbourhood of xj .

However, since p̄j(x) in Eq. (30) is exponentially small when x is not in the neigh-

bourhood of xj , the probability distribution for any x is given by

p̄(x) =
∑
j∗

p̄j(x) , (34)
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where
∑

j∗ denotes the sum over the global minima of V0(x) only. Hence, when there

are several saddle-points, the actual maser phase is described by the saddle-points which

correspond to the global minima of V0(x) only. In the next section, we will actually argue

that, for a fixed a, ∆ and θ, we can have at most two competing global minima in the

large N limit, i.e. there can be at most two terms in the
∑

j∗-sum in Eq. (34).

When the micromaser is described by a distribution like Eq. (33) the mean occupation

number 〈n〉 is proportional to the pumping rate N (see Section 4). The cavity then acts

as a maser, i.e. the system is in a maser phase.

3 THE PHASE DIAGRAM

The probability distribution Eq. (8) determines micromaser phases as a function of

the physical parameters at hand. In this section we will map out phase diagrams in the

a- and θ-parameter space for a given nb 6= 0 and ∆. In general a phase diagram is then

determined by mapping out the global minima of the effective potential V0(x).

By the substitution φ = θ
√

x + ∆2, the effective potential in Eq. (17) can be written

in the form

V0(x) = V0(φ, θ) = − 2

θ2

∫ φ

θ|∆|
dχ χ ln[ w(χ, θ) ] . (35)

Here we have defined

w(χ, θ) =
nb + a q(χ, θ)

1 + nb + b q(χ, θ)
, (36)

and

q(χ, θ) = θ2 sin2 χ

χ2
. (37)

In Eq. (35), the upper integration limit φ and the pump parameter θ may take on arbitrary

values. However, by choosing x(φ) and θ(φ) according to Eq. (26) and Eq. (27) the

effective potential is always at an extremum. We then arrive at an effective multi-branched

potential as given by V0(φ) = V0(φ, θ(φ)). For a given branch k, the variable φ is limited

by Eq. (29).
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If we regard V0(φ) as a function of θ, each branch of V0(θ) = V0(φ, θ(φ)) is at most

double-valued except for branch k = 0. One sub-branch then corresponds to a maximum

(V ′′
0 (x(φ)) < 0), which is swept out first as φ increases, and the other corresponds to a

minimum (V ′′
0 (x(φ)) > 0). Here the V ′′

0 (x(φ)) is explicitly given by

V ′′
0 (x(φ)) =

1 − φ cotφ

sin2 φ [a + nb(2a − 1)]
. (38)

To reconstruct the actual value of V0(x) for the k:th minimum (maximum), we write

V0(x) = V0(φ), evaluated for the sub-branch with V ′′
0 (x(φ)) > 0 (V ′′

0 (x(φ)) < 0).

A convenient representation of V0(φ) for the branch k (given a, nb, ∆) is

V0(φ) = [a + nb(2a − 1)] I(φ) , (39)

where

I(φ) ≡
∫ φ

φ0+kπ

dχ χ4 sin(2χ) − 2 sin2(χ)/χ[
χ2nb + a θ(φ)2 sin2 χ

] [
χ2(1 + nb) + b θ(φ)2 sin2 χ

] . (40)

Here the upper integration limit φ has to be chosen according to Eq. (29). We notice the

characteristic pre-factor a + nb(2a − 1) in Eq. (39) which actually determines the typical

dependence of the parameters a and nb at a saddle-point.

3.1 The Critical Parameters θ∗0 and θk

As a function of θ, the first extremum of V0(x) occurs at θ∗0 ≡ θ(φ0), where φ0 is given

by Eq. (28). The critical pump parameter θ∗0 = θ∗0(a, ∆) is therefore given by

θ∗0 =
arcsin(|∆|/√2a − 1)

|∆| , (41)

which is equivalent to

a =
1

2
+

∆2

2 sin2(θ∗0∆)
. (42)

When the system is not detuned, i.e. when ∆ = 0, this equation reduces to

a =
1

2
+

1

2(θ∗0)2
. (43)
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Eq. (41) determines the first thermal-maser critical line in the a- and θ- phase diagram.

In the maser phase, the order parameter 〈x〉 = 〈n〉/N approaches zero when θ approaches

θ∗0(a, ∆). Furthermore, in the large N limit, 〈x〉 is always zero in the thermal phase

(see Section 4). Hence, the order parameter is continuous on this critical line. The first

derivative of 〈x〉 with respect to θ is, however, discontinuous. In the maser phase we

actually have

d〈x〉
dθ

= 2(
√

2a − 1)3 sin3 φ

tanφ − φ
, (44)

with φ ≥ φ0. When approaching the critical line from the maser phase, we see from

Eq. (44) that d〈x〉/dθ is non-zero (except for a = 1/2). The first thermal-maser critical

line therefore corresponds to a line of second-order phase transitions.

In passing, we mention that in a topological analysis of the second-order phase tran-

sitions [3] of the micromaser system, V0(x) will play the role of a Morse function. The

configuration space M is then the one-dimensional space of x(≡ n/N). The sub-manifold

Mv defined by

Mv = {x ∈ M| p̄(x) ' exp(−NV0(x) ) ≤ v} , (45)

then describes the change of topology close to the second-order phase transitions θ∗0. This

will be true for all second-order transitions discussed below. We observe that for finite

N the change in topology, i.e. the appearance of an additional disjoint x-interval due

to the appearance of a new local maximum in p̄(x), in general occurs before the actual

second-order phase transition.

Critical points where new extrema of V0(x) appear are determined by V ′′
0 (x) = 0, i.e.

non-trivial solutions of

tanφ = φ , (46)

independent of the physical parameters of the micromaser. This equation has infinitely

many positive solutions φ = φk, where k = 1, 2, ... . Corresponding to these solutions we

have the critical pump parameters θk ≡ θ(φk), i.e

θk =
1√

2a − 1

φk

| sin φk| , k = 1, 2, 3, ... , (47)

independent of nb and ∆, for which the k’th branch comes into existence. For a given

branch k ≥ 1, the V ′′
0 (x(φ)) > 0 sub-branches and the V ′′

0 (x(φ)) < 0 sub-branch coin-
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Figure 1: The order parameter 〈x〉 = 〈n〉/N , as a function of θ, when a = 1,

∆ = 0, nb = 0.15 and N = 1000. A dotted vertical line at θ = θk, where θ0 = θ∗0,

indicates where the k:th branch comes into existence. θ∗0 corresponds to a second-

order phase transition. The numerical values of the pump parameters are: θ∗0 = 1,

θ1 = 4.603, θ2 = 7.790, θ3 = 10.950, θ4 = 14.102 and θ5 = 17.250. The various

branches at the extremum of the effective potential, i.e. V0(θ) = V0(φ, θ(φ)), are

also shown. The intersection between two neighbouring V ′′
0 (x(φ)) > 0 sub-branches

at θ = θ∗kk+1 is marked by a circle when this coincidence occurs at a global minimum

of V0(θ). At these first-order maser-to-maser phase transitions the order parameter

〈x〉 makes a discontinuous change in the large N limit. The numerical values of the

transition parameters θ∗kk+1 are: θ∗01 ≈ 6.6610, θ∗12 ≈ 12.035 and θ∗23 ≈ 17.413.

12



-0.3

-0.1

0.1

0.3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
θ

V0(θ)

〈x〉

g

θ∗0 θ1 θ2 θ3 θ4 θ5

6




6

	θ∗1t θ∗t2

6




6

	θ∗0t θ∗t1

6

θ∗0

θ∗23

Figure 2: The order parameter 〈x〉 = 〈n〉/N , as a function of θ, when |∆| = 0.5

and all other parameters as in Fig. 1. A dotted vertical line at θ = θk, where

θ0 = θ∗0, indicates where the k:th branch comes into existence. The numerical value

of θ∗0 is θ∗0 = 1.047. The numerical value of the θk, k 6= 0, is the same as in Fig. 1

since this critical θ only depends on a. The various branches at the extremum

of the effective potential, i.e. V0(θ) = V0(φ, θ(φ)), are also shown. First-order

thermal-to-maser phase transitions occur at the pump parameters θ∗tk and second-

order maser-to-thermal transitions occur at θ∗0, θ∗0t and θ∗kt. The circle at θ = θ∗23
in the figure indicates a maser-to-maser transition. The numerical values of the

critical transition parameters in the figure are: θ∗0 ≈ 1.047, θ∗0t ≈ 5.236, θ∗t1 ≈ 6.193

θ∗1t ≈ 11.519, θ∗t2 ≈ 11.906 and θ∗23 ≈ 17.425.
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cide at this particular critical point θk (see e.g. Fig. 1). The critical point θ = θk also

corresponds to x′(θk) = ∞ as seen from Eq. (44).

Each sub-branch with V ′′
0 (x(φ)) > 0 of the effective potential V0(θ) has one and only

one minimum. This can be seen from the expression

d V0(θ)

dθ
= − 2

θ(φ)
[a + nb(2a − 1)] J(φ) , (48)

where

J(φ) ≡
∫ φ

φ0+kπ

dχ χ4 sin(2χ)[
χ2nb + a θ(φ)2 sin2 χ

] [
χ2(1 + nb) + b θ(φ)2 sin2 χ

] , (49)

and V0(θ) = V0(φ, θ(φ)). The upper integration limit φ must then be chosen according to

Eq. (29) where we, of course, only consider the V ′′
0 (x(φ)) > 0 sub-branch for k ≥ 1.

We can now study the actual intersections of the various branches at a common global

minimum by making use of numerical and analytical methods. The procedure is, for

example, illustrated in Fig. 1 and Fig. 2. We find that V0(θ) is such that if two branches

do intersect at a common global minimum, these branches correspond to k and k + 1, i.e.

they are consecutive branches. A given branch can also intersect with V0(θ) = 0, i.e. the

thermal phase. In addition two consecutive branches can intersect when V0(θ) = 0. We

then have a triple point.

3.2 The Critical Parameters θ∗kk+1, θ∗tk and θ∗kt

If, for a given a, nb and ∆, we have a transition from the maser branch k to the

neighbouring maser branch k + 1, then there exist a φ∗
k and φ∗

k+1 such that

V0(φ
∗
k) = V0(φ

∗
k+1) and θ(φ∗

k) = θ(φ∗
k+1) ≡ θ∗kk+1 , (50)

where

V0(φ
∗
k) = − 2

θ(φ∗
k)

2

∫ φ∗
k

θ(φ∗
k)|∆|

dφ φ ln[ w(φ, θ(φ∗
k)) ] , (51)

and where φ∗
k is in the interval φk < φ∗

k < (π − φ0) + kπ. The reason why we chose

φ∗
k > φk is that we are looking for solutions of Eq. (51) for which V ′′

0 (x(φ)) > 0. The

pump parameter according to Eq. (50) can be expressed as
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θ∗kk+1 =
1√

2a − 1

φ∗
k

| sin φ∗
k|

. (52)

Furthermore, for this particular combination of the parameters, the order parameter 〈x〉 =

〈n〉/N makes a discontinous change as can be seen from the Eq. (26), i.e. the discontinuity

in 〈x〉 is given ∆〈x〉 = x(φ∗
k+1) − x(φ∗

k). We therefore have a first-order phase transition.

If, on the other hand, a given maser branch corresponding to a global minima does not

intersect with a neighbouring maser branch, it is the intersection with the thermal branch

which determines the phase transition (see e.g. Fig. 2). For a given branch k ≥ 1, let

θ∗tk ≡ θ(φ∗
tk) denote the pump parameter of this thermal-to-maser transition. The value

of φ∗
tk is then determined by the solution of

V0(φ
∗
tk) = 0 , (53)

where

V0(φ
∗
tk) = − 2

θ(φ∗
tk)

2

∫ φ∗
tk

θ(φ∗
tk)|∆|

dφ φ ln[ w(φ, θ(φ∗
tk)) ] . (54)

We determine φ∗
tk numerically, where φk < φ∗

tk < (π − φ0) + kπ and k = 1, 2, 3, ... . The

corresponding pump parameters are θ∗tk ≡ θ(φ∗
tk), i.e

θ∗tk =
1√

2a − 1

φ∗
tk

| sin φ∗
tk|

, k = 1, 2, 3, ... . (55)

Due to the same reasons as discussed above, such thermal-to-maser transitions correspond

to first-order phase transitions.

Furthermore, let θ∗kt ≡ θ(φ∗
kt) denote the maser-to-thermal transition for a given branch

k ≥ 0 (see e.g. Fig. 2). The value of φ∗
kt is determined by one of the solutions of

V0(φ
∗
kt) = 0 , (56)

where

V0(φ
∗
kt) = − 2

θ(φ∗
kt)

2

∫ φ∗
kt

θ(φ∗
kt)|∆|

dφ φ ln[ w(φ, θ(φ∗
kt)) ] . (57)

We see that

φ∗
kt = (π − φ0) + kπ , (58)
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Figure 3: The phase diagram for the micromaser system when nb = 0.15 and

∆ = 0. All the critical lines converge to 1/2 in the large θ limit. The thermal-to-

maser critical line θ∗0(a) is determined analytically by Eq. (43). The other critical

lines θ∗kk+1(a), which are maser-to-maser transitions, are determined by Eq. (52).

for all branches k ≥ 0. When ∆ 6= 0, Eq. (56) is trivially fulfilled since the upper

integration limit is equal to the lower. If, on the other hand, ∆ = 0, then Eq. (56) is

fulfilled since θ(φ∗
kt) = ∞. The pump parameter θ∗kt ≡ θ(φkt) is given by

θ∗kt =
(k + 1)π − arcsin(|∆|/√2a − 1)

|∆| , k = 0, 1, 2, ... . (59)

This equation is equivalent to

a =
1

2
+

∆2

2 sin2(θ∗kt∆)
, k = 0, 1, 2, ... , (60)

which is of the same form as Eq. (42). Due to the same reasons as discussed above, such

a maser-to-thermal transition corresponds to a second-order phase transition.

Equipped with these results, we can now construct a complete phase diagram in e.g.

the a- and θ-parameter space for a given nb and ∆.
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3.3 Phase Diagram

The phase diagram when nb = 0.15 and ∆ = 0 is shown in Fig. 3. The first critical line

in this figure is given by Eq. (43). As already mentioned, this corresponds to a second-

order thermal-to-maser phase transition. In the region above this line the mean occupation

number 〈n〉 grows proportionally with the pumping rate N . The cavity therefore behaves

like a maser in this regime. For values of a and θ below this line the only global minimum of

V0(x) occurs at x = 0. In this particular region the probability p̄n is given by the thermal

distribution in Eq. (21), i.e. the micromaser is in the thermal phase. We remark too that

Eq. (42) also determines the radius of converegence of the thermal probability distribution

in Eq. (21). The other critical lines in Fig. 3 are determined by Eq. (50) since for nb = 0.15

and ∆ = 0, all neighbouring V ′′
0 (x(φ)) > 0 sub-branches of V0(θ) = V0(φ(θ), θ) intersect

for some a > 1/2, see Fig. 1.

When the micromaser is detuned the phase diagram is more complicated. Fig. 4 shows

a typical example of a phase diagram when ∆ 6= 0. As we can see from this figure, the

first two maser phases are well separated. The critical value of ∆ for such a separation

of phases is in general determined by considering phase separation on the line a = 1.

For a given nb, let ∆ = ∆kk+1 be the corresponding critical value for phase separation.

With the definition φ∗
t0 ≡ φ0, where φ0 is given in Eq. (28), ∆kk+1 is determined by the

transcendental equation

θ(φ∗
kt) = θ(φ∗

tk) , k = 0, 1, 2, ... , (61)

i.e. the solution of

|∆| =
| sin φ∗

tk|
φ∗

tk

[ (k + 1)π − arcsin |∆| ] . (62)

Here φ∗
tk is determined numerically according to Eq. (53). For nb = 0.15 the first critical

value of detuning is |∆01| ≈ 0.408. When the detuning is larger than ∆kk+1, branch k will

separate from branch k+1 (see e.g. Fig. 4). In passing, we notice that ∆kk+1 is restricted

by ∆2
kk+1 < 1, for all possible branches.

The first critical line in Fig. 4 corresponds to a second-order thermal-to-maser (maser-

to-thermal) transition to the left (right) of its minimum. The minima of the critical lines

are marked by short vertical lines. For any other critical line in Fig. 4 the transition is a

first-order thermal-to-maser (second-order maser-to-thermal) phase transition to the left

(right) of its minimum unless it intersects with another critical line. In the region between
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Figure 4: The phase diagram for the micromaser system when nb = 0.15 and

|∆| = 0.5. In this diagram we have plotted the range of validity of the thermal

distribution (dotted lines). When not visible these dotted lines overlap with the

solid critical lines. The minima of the critical lines are determined by the condition

sin2(∆θ) = 1 and are marked by a short vertical lines. The first critical line θ∗0(a) in

this phase diagram is determined analytically by Eq. (41). The critical lines θ∗tk(a)

are given by Eq. (55) and θ∗kt(a) are given by Eq. (59). Triple points are indicated by

circles. The numerical values of these triple points are (a23, θ23)triple = (0.98, 17.78)

and (a34, θ34)triple = (0.96, 24.04).

any thermal-to-maser line and the neighbouring dotted line, the thermal probability dis-

tribution does not correspond to a global minimum of V0(x). The phase diagram in Fig. 4

also contains triple points. These points are marked by circles. They are mathematically

determined by

V0(φ
∗
tk) = V0(φ

∗
kt) = 0 and θ(φ∗

tk) = θ(φ∗
kt) . (63)
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4 THE ORDER PARAMETER

When the system is in a maser phase the probability distribution is given by Eq. (33).

〈x〉 = 〈n〉/N is then, of course, trivial to compute. For a given a, ∆ and θ 〈x〉 is simply

given by

〈x〉 = xj , (64)

where xj is the value of x where V0(x) reaches its global minimum, i.e. xj is one of

the saddle-points as determined by Eq. (24). In the maser regime, the photon number

behaviour (see e.g. Fig. 1) is well-established in the literature (see e.g. Refs.[1]).

For values of a and θ corresponding to the first critical line Eq. (41), the order param-

eter 〈x〉 is zero. Mathematically this follows trivially by substituting φ0 in Eq. (28) into

Eq. (26) and using Eq. (64). Below this critical line, the micromaser is in the thermal

phase and the order parameter is then given by

〈x〉 =
1

N

nb + a θ2
eff

1 + (1 − 2a) θ2
eff

, (65)

which is zero in the large N limit. We realize from Eq. (65) that the photon number 〈n〉
is in general a periodic function of θ when the system is detuned. The period of 〈n〉 is

then |∆|θ. It reaches its maximum (nb + a/∆2)/(1 + (1 − 2a)/∆2) for ∆θ = (n + 1/2)π,

where n = 0, 1, ... . The minimum of 〈n〉 is nb and occurs for |∆|θ = nπ. In passing, we

note that the maximum value (nb + a/∆2)/(1 + (1− 2a)/∆2) is reduced to nb in thermal

equilibrium, for any nb, ∆ and θ. We also note that when nb = 0 the cavity is dark, i.e.

〈x〉 = 0 for every integer multiple of θ = π/|∆|.
When the system is not detuned, Eq. (65) is not oscillating and it then reduces to

〈n〉 =
nb + a θ2

1 + (1 − 2a) θ2
. (66)

In the large θ limit, Eq. (66) converges to a/(1 − 2a) (see Fig. 5).

The order parameter 〈x〉 can also be studied as a function of the probability a for

the pump atoms to be in an excited state. Varying a over all allowed values keeping

other physical parameters fixed, the order parameter 〈x〉 makes a discontinuous change

for every combination of the physical parameters corresponding to a critical line. Hence,

〈x〉 as a function of a exhibits a plateau-like behaviour when N is sufficiently large. Such
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Figure 5: This figure shows the different behaviours of Eq. (65). nb = 0.15 for

all curves. The straight line corresponds to a = nb/(1 + 2nb) = 3/26, i.e. thermal

equilibrium. The solid curve corresponds to a = 0.2 and |∆| = 0.5. The fat dotted

curve corresponds to a = 0.2 and ∆ = 0. The dashed-dotted curve corresponds to

a = 0 and ∆ = 0.

a behaviour is illustrated in Fig. 6. In this figure we observe a rather slow N convergence

to this plateau-like behaviour.

4.1 Twinkling and Detuning

Above we have observed that the mean value 〈n〉 may oscillate as a function of θ when

the micromaser is in the thermal phase. We say that the system is then in a twinkling

mode. This twinkling behaviour has a close resemblance to the observed atomic inversion

revivals [21, 22].

A somewhat different twinkling behaviour of the micromaser system occurs when the

thermal phase intersects with a maser phase. This feature is illustrated in Fig. 4 with

|∆| = 0.5 and nb = 0.15. For a given a > 1/2 + ∆2/2 we then see that the system has

repeated thermal-to-maser and maser-to-thermal transitions as θ increases. This twinkling

behaviour is not strictly periodic in θ. The winkling phenomena will now, however, be
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Figure 6: The order parameter 〈x〉 = 〈n〉/N as a function of a when nb = 0.15,

∆ = 0, θ = 25 and N = 100, 500, 1000. Each step in 〈x〉 corresponds to a point on

one of the transition curves in Fig. 3.

more pronounced since, for large N , the maser will be “dark” in the thermal phase, but

〈n〉 is large in the maser phase since 〈n〉 is proportional to N in this region.

5 THE CORRELATION LENGTH

In this section we study long-time correlations in the large N limit. This notion of

a correlation length for the micromaser system was first introduced in Refs. [9]. These

correlations have a surprisingly rich structure and reflect global properties of the station-

ary photon distribution. The probability P(s) of finding an atom in a state s = ± after

the interaction with the cavity, where + represents the excited state and − represents the

ground state, can be expressed in the following matrix form [9]:

P(s) = ū0T

M(s)p̄ , (67)

such that P(+) + P(−) = 1. The elements of the vector p̄ are given the equilibrium
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distribution in Eq. (8), and the matrix M(s) is given by Eqs.(5) and (6). The quantity

ū0 is a vector with all entries equal to 1, ū0
n = 1. Furthermore, the joint probability for

observing two atoms in the states s1 and s2 with a time-delay t between them, is given

by [9]

P(s1, s2, t) = ū0T

S(s2) e−γLt S(s1) p̄

= ū0T

M(s2) e−γLt S(s1) p̄ , (68)

where L is given by Eq. (3) and where

S(s) = (1 + LC/N)−1M(s) . (69)

We observe that P(+,−, t) = P(−, +, t) [9], which means that the cavity photons and

the outgoing atoms are not quantum-mechanically entangled. Statistical correlations do,

however, exist.

A properly normalised correlation function is then defined by

γA(t) =
〈ss〉t − 〈s〉2

1 − 〈s〉2 , (70)

where 〈ss〉t =
∑

s1,s2
s1s2P(s1, s2, t) and 〈s〉 =

∑
s sP(s). This correlation function satis-

fies −1 ≤ γA(t) ≤ 1. At large times t → ∞, we then define the atomic beam correlation

length ξA by [9]

γA(t) ' e−t/ξA . (71)

The lowest eigenvalue λ = 0 of L determines the stationary equilibrium solution p̄. The

next non-zero eigenvalue λnz of L, on the other hand, determines the typical time scales for

the approach to the stationary situation. This eigenvalue can be determined numerically.

The relation between λnz and the atomic beam correlation length is 1/ξA = γλnz. For

photons we define a similar correlation length ξC . It follows that the correlation lengths

are identical, i.e. ξA = ξC ≡ ξ [9].

The correlation length γξ is shown in Fig. 7 (∆ = 0) and Fig. 8 (|∆| = 0.5) for various

values of N . Furthermore, Fig. 9 shows γξ for various values of the detuning. When the

detuning is sufficiently small, we observe from these figures that the correlation length

exhibits large peaks for different values of θ. In the large N limit, numerical studies reveal

that these large peaks occur at the transition parameters θ∗0, θ∗kk+1 and/or θ∗tk, depending

22



0

5

10

15

0 5 10 15 20
θ

log(γξ)

Figure 7: The logarithm of the correlation length γξ as a function of θ for various

values of N = 25, 50, ..., 125 when nb = 0.15, ∆ = 0 and a = 1. The numerical values

of the vertical lines are as in Fig. 1.

on the values of the given nb and ∆ (see e.g. Fig. 7 and Fig. 8). We will discuss the

behaviour of these peaks in more detail in Section 5.4. When the detuning is sufficiently

large, i.e. ∆2 > 2a− 1, the correlation becomes smaller and behaves in a strictly periodic

manner as a function of the pump parameter θ (see e.g. Fig. 9).

In order to arrive at a better understanding of the behaviour of the correlation length,

we will derive various approximative expressions in the following subsections. We will

use three different methods in order to derive such expressions for ξ and we will compare

them with the exact numerical results.

5.1 The Eigenvalue Value Method

By making use of the orthonormality conditions for the left (un) and right (pn) eigen-

vectors corresponding to the eigenvalue problem as defined by Eq. (2), i.e. uT L = λuT

and Lp = λp, it is shown in [9] that an eigenvalue satifies the equation
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Figure 8: The logarithm of the correlation length γξ as a function of θ for various

values of N = 25, 50, ..., 125 when nb = 0.15, |∆| = 0.5 and a = 1. The numerical

values of the vertical lines are as in Fig. 2.

λ =

∞∑
n=0

pnBn(un − un−1)
2 , (72)

where

Bn = (nb + 1)n + Nbqn . (73)

and pn = p̄0
nun. The left eigenfunction un corresponding to the first non-zero eigenvalue

λnz has one node. It is natural to assume that this node occurs at 〈n〉. This is so since in

the neighbourhood of 〈n〉 we can then use the Ansatz

un =
n − 〈n〉

σn
, (74)

where σ2
n = 〈n2〉 − 〈n〉2 as usual. The average values are assumed to be taken over the

equilibrium distribution p̄n. It then follows that u · p̄ = 〈un〉 = 0 and u · p = 〈u2
n〉 = 1. By

the Ansatz Eq.(74) it now follows that

γξ ' γξE(θ) =
σ2

n

(nb + 1)〈n〉 + Nb 〈qn〉 , (75)
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Figure 9: The logarithm of the correlation length γξ as a function of θ for various

values of |∆| = 0, 0.25, 0.50, 0.75 and 1.25 when nb = 0.15, a = 1 and N = 100.

since γξ = 1/λnz. Eq. (75) can be simplified in the large N limit. In this case we have

〈qn〉 ≈ θ2
eff 〈n〉/N . If, in addition, the micromaser is in the thermal phase, then Eq. (75)

reduces to

γξE(θ) =
1

1 − (2a − 1)θ2
eff

, (76)

which explains the periodic behaviour of the correlation as mentioned in the beginning

of this section. We also observe that γξE = 1 when a = 1/2, independent of any of the

other physical parameters at hand.

5.2 The Master Equation Method

Let us now derive an approximative expression for the correlation length by making use

of another method. For a general right eigenvector of the matrix L we define p(x) = Npn

and write it as p(x) = p̄(x)u(x) with the left eigenvector u(x) = un. It is then shown in

[9] that
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λ u(x) = [ x − (2a − 1) q(x) ]
du(x)

dx
− 1

N

d

dx

[
( nbx + aq(x) )

du(x)

dx

]
, (77)

in the large N limit. Here we again make use of the fact that the eigenfunction corre-

sponding to λnz has only one node, say at x = x0. The function u(x) is therefore given

by u(x) ≈ x − x0 in the neighbourhood of x0. Furthermore, when θ
√

x(θ) + ∆2 � 1, we

can expand q(x) around x = 0, in which case Eq. (77) reduces to

λnz(x − x0) = α(θ) x + β(θ) x2 − γ(θ)

N
, (78)

where

α(θ) = 1 − (2a − 1) θ2
eff , (79)

β(θ) = (2a − 1)

[
sin2(θ∆)

∆4
− θ sin(θ|∆|) cos(θ|∆|)

∆3

]
, (80)

γ(θ) = nb + a θ2
eff . (81)

Notice that Eq. (81) is only valid when we are not too close to a critical line. For small

perturbations around x0, i.e. x = x0 + δx, the eigenvalue λnz is then

λnz = α(θ) + 2β(θ) x0 , (82)

where x0 is easily solved by the aid of this equation and Eq. (78):

x0(θ) = − α(θ)

2 β(θ)
+

√(
α(θ)

2 β(θ)

)2

+
γ(θ)

β(θ) N
. (83)

Since 1/ξ = γλnz, we get

γξ ' γξM(θ) =
1√

α2(θ) +
4 β(θ) γ(θ)

N

. (84)

In the large N limit, where x0 = 0 (see Eq. (83)), Eq. (84) is reduced to γξM(θ) = 1/α(θ),

i.e.

γξM(θ) =
1

1 − (2a − 1)θ2
eff

, (85)

in agreement with Eq. (76).
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Figure 10: Comparison of log(γξ) as a function of θ for various analytical

expressions of the correlation. The parameters for all lines are a = 1, |∆| = 0.5,

nb = 0.15 and N = 100. The solid curve is the exact correlation length.

The correlation length ξM(θ) exhibits its first peak at θ = θ∗0 (see e.g. Fig. 10 and

Fig. 11). The correlation length Eq. (84) at this particular peak is

γξM(θ∗0) =
2a − 1

2

√
N

a + nb(2a − 1)
χ(θ∗0|∆|) , (86)

where

χ(x) =

√
sin2 x

1 − x cotx
. (87)

In Eq. (86) the probability a can only be chosen in the interval 1/2 + ∆2/2 ≤ a ≤ 1.

This equation shows that the correlation θ = θ∗0 grows as
√

N . Again we notice the factor

a + nb(2a − 1). Also note that Eq. (86) vanishes when a = 1/2. Since by assumption

θ|∆| � 1, then Eq. (87) is χ(θ|∆|) ≈ √
3 [ 1−(θ∆)2/5 ]. The correlation length in Eq. (86)
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Figure 11: Comparison of log(γξ) as a function of θ for various analytical

expressions derived in the text. The parameters for all curves are a = 0.75, |∆| =

0.5, nb = 0.15 and N = 100. The solid curve is the exact correlation length.

is then in agreement with the results of Ref.[9] for ∆ = 0.

5.3 The Mean Field Approximation

We can also use a mean field approximation in order to get an approximative and an-

alytical expression for the correlation length ξ. When the atoms have Poisson distributed

arrival times, the continuous master equation gives the following exact equation for the

average photon occupation number [9]:

1

γ

d〈x〉
dt

= −
[
〈x〉 − nb

N

]
+ a〈qn+1〉 − b〈qn〉 . (88)

By making use of the mean field approximation 〈qn〉 ≈ q〈n〉 = q(〈x〉), the above equation

simplifies considerably. The stationary solution, 〈x〉 = x0, of Eq. (88) is determined by

a transcendent equation which, generally, can be solved numerically only. However, with

the approximation
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Figure 12: Comparison of log(γξ) as a function of θ for various analytical

expressions of the correlation as derived in the text. The parameters for all curves

are a = 0.25, |∆| = 0.5, nb = 0.15 and N = 100. The solid curve is the exact

correlation length. In the large N limit all curves overlap completely.

q(〈x〉) ≈ q(〈x〉 + 1/N) ≈ q(〈x〉 + f/N) , (89)

the stationary solution x0 has a simple parametric representation. To get a consistent

expression for the correlation with Eq. (86) the weight factor f has to be

f =
a

2a − 1
. (90)

With the approximation Eq. (89), which clearly is very good for large N , Eq. (88) reduces

to

1

γ

d〈x〉
dt

= −
[
〈x〉 − nb

N

]
+ (2a − 1) q(〈x〉 + f/N) . (91)

The stationary solution x0 of Eq. (91) then satisfies the transcendental mean field equation

x0 =
nb

N
+ (2a − 1) q(x0 + f/N) . (92)
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In the large N limit, Eq. (92) reduces to Eq. (24) after a multiplication by x0. In contrast

to the saddle-point equation Eq. (24), Eq. (92) therefore always has the trivial x0 = 0

solution in the large N limit. The general solution of Eq. (92) can be written in the

following parametric form:

x0(φ) =
1

2

(
−h(φ) +

√
h2(φ) + 4 g(φ)

)
, (93)

where

h(φ) ≡ f − nb

N
+ ∆2 − (2a − 1) sin2 φ , (94)

g(φ) ≡ nb f

N2
+ ∆2nb

N
+

f

N
(2a − 1) sin2 φ , (95)

and

θ(φ) =
φ√

x0(φ) + f/N + ∆2
. (96)

For small perturbations around x0, i.e. 〈x〉 = x0 + δx, we find the equation of motion

1

γ

d δx

dt
= − [ 1 − (2a − 1) q ′(x0 + f/N) ] δx , (97)

where

q ′(x) ≡ d q(x)

dx
=

∆2

(x + ∆2)2
sin2(θ

√
x + ∆2) (98)

+
x

(x + ∆2)3/2
θ sin(θ

√
x + ∆2) cos(θ

√
x + ∆2) .

In terms of φ, Eq. (98) at x = x0(φ) reads

q ′(φ) =
1

(x0(φ) + f/N + ∆2)2

[
∆2 sin2 φ + x0(φ) φ sinφ cosφ

]
. (99)

From Eq. (97) we immediately see that the correlation is given by

γξ ' γξMF (φ) =
1

1 − (2a − 1) q ′(φ)
. (100)

Notice that γξMF is here a function of the parameter φ, in contrast to Eq. (75) and

Eq. (84).
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When the micromaser is not detuned, Eq. (100) reduces to

γξMF (φ) =
1

1 − (2a − 1)
φ sinφ cos φ

(2a − 1) sin2 φ + nb+f
N

. (101)

The peak at θ = θ∗0 corresponds to

φ = φ∗
0 ≈

(
3 (nb + f)

N (2a − 1)

)1/4

. (102)

Substituting Eq. (102) into equation Eq. (101) the correlation is

γξMF (φ∗
0) =

2a − 1

2

√
3 N

a + nb(2a − 1)
, (103)

for some a the interval 1/2 ≤ a ≤ 1. This correlation is in agreement with Eq. (86).

In the thermal phase, where x0 = 0 in the large N limit, Eq. (100) reduces to

γξMF (θ) =
1

1 − (2a − 1) θ2
eff

, (104)

in agreement with Eq. (76) and Eq. (85).

5.4 Statistical Barrier Penetration

As we have seen above, the correlation length exhibits large peaks for the pump

parameters θ∗0, θ∗kk+1 and/or θ∗tk. The correlation grows as
√

N at θ = θ∗0. At θ∗kk+1 and

θ∗tk the large N dependence is, however, different. At these values of the pump parameter

there is instead a competition between two neighbouring minima of the effective potential

V0(x) corresponding to, say, x = x0 and x = x2. A barrier, corresponding to a local

maximum of V0(x) at, say, x = x1, then separates these two minima. Using the technique

of [9] it can be shown that the peak in the correlation length close to θ = θ∗kk+1 is described

by the expression

γξ ' 2π

[ x1(1 + nb) + b q(x1) ]
√−V ′′

0 (x1) f(x0, x1, x2)
, (105)

where we have defined
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f(x0, x1, x2) =
√

V ′′
0 (x0) e−N [V0(x1)−V0(x0)] +

√
V ′′

0 (x2) e−N [V0(x1)−V0(x2)] . (106)

We therefore conclude that

γξ ' eN∆V0 , (107)

where ∆V0 is the smallest potential barrier between the two competing minima of the

effective potential V0(x). This equation shows explicitly that the correlation length grows

exponentially with N . Here we observe that V0(θ), and hence also ∆V0, is proportional

to the combination a + nb(2a − 1) (see Eq. (39)). Since the γξ-peaks grow exponentially

with N they cannot be described by Eq. (77) with a finite power expansion of q(x). The

first-order transitions at pump parameters corresponding to θ = θ∗tk can be treated in a

similar fashion.

5.5 Discussion

In Figs. 10, 11 and 12 we show the different analytical expressions for γξ as given by

Eqs. (75), (84) and (100). We have also plotted the exact correlation γξ. For sufficiently

large N , all the three expressions are good approximations to the correlation length around

the first peak (see Figs. 10 and 11). We also observe that the mean field approximation

is a better approximation than Eq. (84). Moreover, the mean field approximation as well

as the the assumption θ
√

x(θ) + ∆2 � 1 break down for pump parameters beyond

the first peak of the correlation length. Hence, neither Eq. (84) nor Eq. (100) is a good

approximation for θ’s above the first peak (see e.g. Fig. 11). Eq. (100), however, describes

some qualitative features of the correlation length also for values of θ above the first peak,

even though Eq. (100) then gives numerical values which are quantitatively wrong. We

finally notice that all curves in Fig. 12 overlap in the large N limit.

6 TRAPPING STATES

The stationary photon probability distribution Eq. (8) has a special property when

nb = 0 and qm = 0. We then have that p̄n = 0 for all n ≥ m. The cavity then cannot
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Figure 13: The solid line shows the order parameter 〈x〉 = 〈n〉/N as a function

of θ when nb = 0, a = 1, ∆ = 0 and N = 100. As a guide to the eye we have

also plotted the mean field solution (see Eq. (26) and Eq. (27)). The dashed-dotted

curve is xk(θ) (see Eq. (109)). For a given k ≥ 1, this curve lies between the mean

field solutions corresponding to the branches k and k − 1.

be pumped above m by photon emission from the pump atoms. The micromaser is then

said to be in a trapping state [7, 16]-[19]. Actually, such trapping states have recently

been observed in the stationary state of the micromaser system [20]. For a given ∆ and

k = 1, 2, 3, ..., we now define the function

θk(x) =
kπ√

x + ∆2
, (108)

or equivalently

xk(θ) =
(kπ)2

θ2
− ∆2 . (109)

For a given N , trapping states then occur at the pump parameters

θtr
mk = θk(xtr) , (110)

where xtr = m/N and m = 0, 1, 2, 3, ... .

The effect of trapping states on the order parameter 〈x〉 is illustrated in Fig. 13 with
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an atomic flux parameter N = 100. We then clearly observe dips in the order parameter

〈x〉 due to the presence of trapping states. The observed structure of the dips in 〈x〉 can

be explained as follows. For a given k ≥ 1, one can prove that the curve described by

Eq. (109) lies between the mean field solution corresponding to branch k and k − 1 (c.f.

Fig. 13). Because of this fact, and since 〈n〉 ≤ m, the trapping-dip at θtr
mk reaches down

to (in fact, just below) the mean field curve corresponding to branch k − 1 (c.f. Fig. 13).

In general, for a given k, trapping states such that the value of m/N is larger than

the order parameter 〈x〉 have a minor effect on the order parameter. When θ . θ∗01 (or

θ∗t1) the presence of trapping states therefore have little effect on the order parameter (see

e.g. Fig. 13) since the curve described by Eq. (109) lies above the order parameter 〈x〉.
It is easy to realize that trapping effects become less significant when the system

is detuned. In this case we see from Eq. (26) and Eq. (109) that xk(θ) and the mean

field solution is just reduced by the same amount ∆2. Numerical studies also show that

the micromaser phase transitions occur essentially at values of the pump parameter θ

almost independent of the value of the detuning ∆2 ≤ 1. Due to these facts the order

parameter 〈x〉, xk(θ) in Eq. (109) as well as the mean field solution will intersect with

a shifted horizontal θ-axe and hence trapping effects become less important. In passing

we notice that, for a given value of the detuning ∆, trapping effects cannot occur for

θ ≤ θtr
min ≡ π/

√
1 + ∆2. This is due to the fact that the order parameter corresponding

to the mean field solution (see Eq. (26) and Eq. (27)) can never exceed unity.

As the atomic flux N increases, the dips in 〈x〉 due to trapping states become denser

as a function of the pump parameter θ [17]. In the large N limit and for nb = 0, 〈x〉
therefore ceases to be an appropriate order parameter and the system appears to be

frustrated. Since the observable 〈x〉 then varies rapidly it is natural to ask whether it is

well defined at all. When the system is in a maser phase and when N is sufficiently large,

numerical studies of the standard deviation ∆x =
√〈x2〉 − 〈x〉2 as a function of θ show

that ∆x is much smaller than the value of 〈x〉 itself for all possible values of θ, except for

values of θ near the phase transitions θ = θ∗kk+1 and/or θ = θ∗tk. Hence, the observable

〈x〉 is actually well defined except near these particular pump parameters.

In Fig. 14 we have studied the correlation length for different values of N . The effect of

trapping states becomes more pronounced when N increases. We observe that the peaks

in the correlation length corresponding to trapping states get denser for large values of

N . Because of the same reasons as discussed earlier in this section, the effect of trapping

states on the correlation length become less significant when the system is detuned.

As mentioned in Section 5, the correlation length reaches a maximal value when the
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potential barrier between the two competing minima of the effective potential V0(x) is at

its lowest value. If the system is not in a trapping state, the probability distribution p̄n

then essentially consists of two Gaussian peaks with heights which are of the same order of

magnitude. Furthermore, due to the pre-factor w(x) in p̄(x) (c.f. Eq. (15)), a micromaser

system which is close to a trapping state will also have a probability distribution which

essentially consists of two Gaussian peaks of the same order of magnitude, even though the

potential barrier between the two competing minima of the effective potential V0(x) will

then be smaller. Hence, the correlation length again reaches a large value. Exactly at a

trapping state, however, the probability distribution consists essentially of one dominating

Gaussian peak in the large N limit. This means that we should expect the correlation

length to become large close to a trapping state however not exactly at the occurence of

such a state. Numerical studies are in accordance with these observations. As illustrated

in Fig. 15, there is, furthermore, no visible difference between the θ-positions of the peaks

of γξ and the θ-positions of the dips of the 〈x〉. This is not an obvious fact since ξ measures

long-time features of the micromaser system but 〈x〉 is an instantaneous observable. As

the number of branches increases, that is, the number of local maxima in p̄(x) increases,

the connection between the heights of the peaks of ξ and the depths of the dips of 〈x〉
becomes increasingly more complex.

As in Section 5, let λn denote the eigenvalues of the matrix L. Introducing the

cumulative probability

Pn =

n−1∑
m=0

p̄n , (111)

it was then shown in Ref.[9] that

∞∑
n=1

(
1

λn

− 1

λ0
n

)
=

∞∑
n=1

(
Pn(1 − Pn)

[(1 + nb)n + Nbqn] p̄n

− 1 − [nb/(1 + nb)]
n

n

)
, (112)

where λ0
n ' n is an eigenvalue corresponding to the thermal equilibrium distribution. In

the large N limit the left-hand side can be approximated by γξ − 1. Hence, Eq. (112)

reads

γξ ≈ 1 +

∞∑
n=1

(
Pn(1 − Pn)

[(1 + nb)n + Nbqn] p̄n
− 1 − [nb/(1 + nb)]

n

n

)
. (113)

When the parameters are as in Fig. 13 we find that, except for a small interval 2 .
θ . 4, the sum-rule prediction Eq. (113) is in surprisingly good agreement with the exact
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Figure 14: The logarithm of γξ as a function of θ when N = 25, N = 50 and

N = 100 and where nb = 0, a = 1 and ∆ = 0.

correlation length, even at trapping states. We have no deep explanation of this numerical

observation.

7 FINAL REMARKS

We have studied the micromaser phase transitions at non-zero detuning and for pump

atoms prepared in a diagonal statistical mixture. New novel features of the micromaser

system then emerge as plateaux in the order parameter 〈x〉 as a function of the atomic

density matrix as well as a twinkling behaviour at non-zero detuning. By introducing

fluctuations in the pump-parameter θ one can decrease the signal-to-noise ratio in observ-

ables like P(+) and P(+, +, t) [7, 9, 6]. Elsewhere we will investigate this feature of noise

synchronization in more detail, also when the detuning ∆ parameter is a random variable.

It turns out that fluctuations in ∆ also lead to features similar to fluctuations in θ, as

was already anticipated in Ref.[7]. Fluctuations in the atomic density matrix parameter

a lead, however, not to an output signal of the micromaser with less fluctuations.
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Figure 15: The logarithm of γξ and 15〈x〉 as a function of θ when the parameters

are as in Fig. 13. There is no visible difference between the θ-positions of the

correlation trapping-peaks and the θ-positions of the order parameter trapping-

dips. The dotted lines are the mean field solution Eq. (26) and Eq. (27) for branch

k = 0, k = 1 and k = 2 for some limited interval of φ.
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The authors wish to thank A. De Rújula and the members of the TH-division at CERN

for the warm hospitality while the present work was completed. The research has been

supported in part by the Research Council of Norway under contract no. 118948/410.

One of the authors (B.-S.S.) wishes to thank H. Walther for discussions and useful corre-

spondence.

References

[1] H. Walther, “The Single Atom Maser and the Quantum Electrodynamics in a Cav-

ity ”, Physica Scripta T23 (1988) 165; “Experiments on Cavity Quantum Electrody-

namics ” Phys. Rep. 219 (1992) 263; “Experiments With Single Atoms in Cavities

and Traps ” in “Fundamental Problems in Quantum Theory ”, Eds. D. M. Green-

37



berger and A. Zeilinger, Ann. N.Y. Acad. Sci. 755 (1995) 133; “Single Atom Exper-

iments in Cavities and Traps ”, Proc. Roy. Soc. A454 (1998) 431; “Quantum Optics

of a Single Atom ”, Laser Physics 8 (1998) 1; Physica Scripta T76 (1998) 138.

[2] K. An, J.J. Childs, R.R. Dasari and M.S. Feld, “ Microlaser: A Laser with One Atom

in an Optical Resonator ”, Phys. Rev. Lett. 73 (1994) 3375.

[3] L. Caiani, L. Casetti, C. Clementi and M. Pettini, “Geometry of Dynamics, Lyapunov

Exponents, and Phase Transitions ”, Phys. Rev. Lett. 79 (1997) 4361; L. Casetti,

E.G.D. Cohen and M. Pettini, “Topological Origin of the Phase Transition in a

Mean-Field Model ”, Phys. Rev. Lett. 82 (1999) 4160.

[4] A. Buchleitner and R.N. Mantegna, “Quantum Stochastic Resonance in a Micro-

maser ”, Phys. Rev. Lett. 80 (1998) 3932.

[5] A. Maritan and J.R. Banavar, “Chaos, Noise, and Synchronization ”, Phys. Rev.

Lett. 72 (1994) 1451.

[6] B.-S. Skagerstam in “Applied Field Theory ”, Eds. Choonkyu Lee, Hyunsoo Min and

Q-Han Park (Chungbum Publ. House, Seoul, 1999).

[7] D. Filipowicz, J. Javanainen and P. Meystre, “The Microscopic Maser ”, Opt. Comm.

58 (1986) 327; “Theory of a Microscopic Maser ” Phys. Rev. A34 (1986) 3077.

[8] A.M. Guzman, P. Meystre and E. M. Wright, “Semiclassical Theory of the Micro-

maser ”, Phys. Rev. A40 (1989) 2471.

[9] P. Elmfors, B. Lautrup and B.-S. Skagerstam, “Correlations as a Handle on the

Quantum State of the Micromaser ”, CERN/TH 95-154 (cond-mat/9506058); Phys-

ica Scripta 55 (1997) 724; “Correlations in the Micromaser” Phys. Rev. A54 (1996)

5171.

[10] O. Benson, G. Raithel and H. Walther, “Quantum Jumps of the Micromaser Field:

Dynamic Behavior Close to Phase Transition Points ”, Phys. Rev. Lett.72 (1994)

3506 and “Dynamics of the MicroMaser Field ” in “Electron Theory and Quantum

Electrodynamics: 100 Years Later ”, Ed. J.P. Dowling (Plenum Press, New York,

1997).

38



[11] P.K. Rekdal and B.-S. Skagerstam, “On the Phase Structure of the Micromaser ”,

Trondheim Seminar in Theoretical Physics 4 (1999) and quant-ph/9910110 (submit-

ted for publication).

[12] L. Lugiato, M. Scully and H. Walther, “Connection Between Microscopic and Macro-

scopic Maser Theory ”, Phys. Rev. A36 (1987) 740.

[13] M.O. Scully and M.S. Zubairy, “Quantum Optics ” (Cambridge University Press,

Cambridge, 1996).

[14] E.T. Jaynes and F.W. Cummings, “Comparison of Quantum and Semiclassical Ra-

diation Theories with Application to the Beam Maser ”, Proc. IEEE 51 (1963) 89.

[15] See e.g. R. Courant and D. Hilbert, “Methods of Mathematical Physics ” (Inter-

science, New York, 1953) and M. Fleischhauer and W.P. Schleich, “Revivals Made

Simple: Poisson Summation Formula as a Key to the Revivals in the Jaynes-

Cummings Model , Phys. Rev. A47 (1993) 4258.

[16] P. Filipowicz, J. Javanainen and P.Meystre, “Quantum and Semiclassical Steady

States of a Kicked Cavity Mode ”, J. Opt. Soc. Am. B 3 (1986) 906.

[17] P. Meystre, G. Rempe and H. Walther, “Very-Low-Temperature Behavior of a Mi-

cromaser ”, Opt. Lett. 13 (1988) 1078.

[18] P. Meystre and J.J. Slosser, “Destruction of Quantum Coherence in a Micromaser

by Finite Detection Efficiency ”, Opt. Comm. 70 (1989) 103.

[19] J.J. Slosser and P. Meystre “Tangent and Cotangent States of the Electromagnetic

Field ”, Phys. Rev. A 41 (1990) 3867.

[20] M. Weidinger, B.T.H. Varcoe, R. Heerlein and H. Walther, “Trapping States in the

Micromaser ”, Phys. Rev. Lett. 82 (1999) 3795.

[21] G. Rempe, H. Walther and N. Klein, “Observation of Quantum Collapse and Revival

in the One-Atom Maser ”, Phys. Rev. Lett. 58 (1987) 353.

[22] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond and

S. Haroche, “Quantum Rabi Oscillation: A Direct Test of Field Quantization in a

Cavity ”, Phys. Rev. Lett. 76 (1996) 1800.

39



-2

0

2

4

6

8

10

12

14

16

0 5 10 15 20



0

5

10

15

20

0 5 10 15 20


