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Abstract

Any two infinite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The
sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if
all self-adjoint operators can be observed, and if there is no further major axiom in
quantum physics than those formulated for example in Dirac’s ‘Quantum Mechanics’,
then a quantum physicist would not be able to tell a torus from a hole in the ground. We
argue that there are indeed such axioms involving observables with smooth time evolution:
they contain commutative subalgebras from which the spatial slice of spacetime with its
topology (and with further refinements of the axiom, its CK− and C∞− structures) can
be reconstructed using Gel’fand - Naimark theory and its extensions. Classical topology
is an attribute of only certain quantum observables for these axioms, the spatial slice
emergent from quantum physics getting progressively less differentiable with increasingly
higher excitations of energy and eventually altogether ceasing to exist. After formulating
these axioms, we apply them to show the possibility of topology change and to discuss
quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum
physics are also addressed.
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1 Introduction

Conventional expositions of classical physics assume that the concept of the spatial slice
Q and its topological and differential geometric attributes are somehow known , and
formulate dynamics of particles or fields using Q and further metaprinciples like locality
and causality. The space Q thus becomes an irreducible background , immune to analysis,
for a classical physicist, even though it is an indispensable ingredient in the formulation
of physical theory.

Quantum physics is a better approximation to reality than is classical physics. Still,
models of quantum physics are seldom autonomous, but are rather emergent from a
classical substructure. Thus we generally formulate a quantum model by canonical or
path integral quantisation of a classical Lagrangian based on the space Q . We thus see
that Q and its properties are tamely accepted , and they are not subjected to physical or
mathematical analysis, in such conservative quantum physics too.

Classical topology is in this manner incorporated in conventional quantum physics by
formulating it using smooth functions onQ. There is reason to be uneasy with this method
of encoding classical data in quantum physics. In quantum theory, the fundamental
physical structure is the algebra of observables, and it would be greatly more satisfactory
if we can learn if and how operator algebras describe classical topology and its differential
attributes.

This note will report on certain ongoing research with several colleagues concerning
this question which is fundamentally an enquiry into the nature of space and time in
quantum physics. Some of our ideas have already been published elsewhere [1, 2, 3, 4].
Our work touches both on issues of relevance to quantum gravity such as the meaning
of “quantized topology” and the possibility of topology change, and on topics of signifi-
cance for foundations of quantum physics. I think that we have progressively approached
a measure of precision in the formulation of relatively inarticulated questions, but our
responses are still tentative and lacking in physical and mathematical completeness and
rigor.
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2 The Problem as a Parable

We restate the problem to be addressed here.It is best introduced as a little story about
a quantum baby. The story will set the framework for the rest of the talk. Its proper
enjoyment calls for a willing suspension of disbelief for the moment.

All babies are naturally quantum, so my adjective for the baby can be objected to
as redundant and provocative, but it invites attention to a nature of infants of central
interest to us, so let us leave it there.

Parable of the Quantum Baby

Entertain the conjecture of a time, long long ago, when there lived a quantum baby
of cheerful semblance and sweet majesty. It was brought up by its doting parents on a
nourishing diet of self-adjoint operators on a Hilbert space. All it could experience as it
grew up were their mean values in quantum states. It did not have a clue when it was
little that there is our classical world with its topology, dimension and metric. It could
not then tell a torus from a hole in the ground.

Yet the baby learned all that as it grew up.

And the wise philosopher is struck with wonder: How did the baby manage this
amazing task?

For the problem is this: Even in a quantum theory emergent from a smooth classical
configuration space Q, there is no need for a wave function ψ, or a probability density ψ∗ψ,
to be continuous on Q. It is enough that the integral

∫

ωψ∗ψ over Q for an appropriate
volume form ω is finite. Probability interpretation requires no more.

But if the baby can observe all self-adjoint operators with equal ease, and thereby
prepare all sorts of discontinuous quantum states, how then does it ever learn of Q, its
topology and its differential attributes ? The problem is even worse: We shall see below
that any two (separable)Hilbert spaces are isometric so that there is only one abstract
Hilbert space.

This then is our central question. All that follows is charged with its emotional content,
and comes from trying to find its answer.
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3 Another Statement

We can explain the baby problem in yet another way.

In quantum physics,observables come from bounded operators on a (separable [5])
Hilbert space H. [We will deal only with separable Hilbert spaces.] The latter is generally
infinite-dimensional.

But all infinite-dimensional Hilbert spaces are isomorphic, in fact unitary so. If |n >(i)

(n ∈ IN) gives the orthonormal basis for the Hilbert space H(i)(i = 1, 2), we can achieve
this equivalence by setting |n >(2)= V |n >(1). That being so, any operator A(1) on H(1)

has a corresponding operator A(2) = V A(1)V −1 on H2).

How then does a quantum baby tell a torus from a hole in the ground?

Without further structure in quantum physics besides those to be found in standard
text books, this task is in fact entirely beyond the baby.

In conventional quantum physics of particles say,we generally start from smooth func-
tions (or smooth sections of hermitean vector bundles) on Q and complete them into a
Hilbert space H using a suitable scalar product. In this way, we somehow incorporate
knowledge about Q right at the start.

But this approach requires realizing H in a particular way, as square integrable func-
tions (or sections of hermitean vector bundles)on Q. The presentation of H in this manner
is reminiscent of the presentation of a manifold in a preferred manner, as for instance using
a particular coordinate chart.

Can we give a reconstruction of Q in an intrinsic way? What new structures are
needed for this purpose?

In the scheme we develop as a response to these questions, Q emerges with its C∞−
structure only from certain observables, topology and differential features being attributes
of particular classes of observables and not universal properties of all observables. Thus
Q emerges as a manifold only if the high energy components in the observables are sup-
pressed. When higher and higher energies are excited, it gets more and more rough and
eventually altogether ceases to exist as a topological space modelled on a manifold. Here
by becoming more rough we mean that C∞ becomes CK and correspondingly the C∞−
manifold Q becomes a CK− space QK .

The epistemological problems we raise here are not uniquely quantal.They are encoun-
tered in classical physics too , but we will not discuss them here.
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4 What is Our Quantum System?

The system we consider is generic. If K is the configuration space of a generic system,such
as that of a single particle or a quantum field,its algebra of observables normally contains
the algebra C∞(Q) of smooth functions on the spatial slice Q.For a charged field, for
example,suitably smeared charge, energy and momentum densities can generate this al-
gebra. That is ( provisionally) enough for our central goal of recovering Q from quantum
observables.

5 Time is Special

We have to assume that time evolution is given as a unitary operator U(t) which is
continuous in t. Our analysis needs this input. Time therefore persists as an a priori
irreducible notion even in our quantum approach. It would be very desirable to overcome
this limitation. (See [6] in this connection.)

There is more to be said on time, its role in measurement theory and as the mediation
between quantum and classical physics. There are brief remarks on these matters below.

It is true that in so far as our main text is concerned, U(t) or the Hamiltonian can be
substituted by spatial translations, momenta or other favorite observables. But we think
that time evolution is something special, being of universal and central interest to science.
It is for this reason that we have singled out U(t).

6 The Gel’fand-Naimark Theory

The principal mathematical tool of our analysis involves this remarkable theory [7] and,
to some extent its developments in Noncommutative Geometry [8, 9, 10, 11, 12]. We shall
now give a crude and short sketch of this theory.

A C∗-algebra A with elements c has the following properties: a) It is an algebra over
lC. b) It is closed under an antinvolution ∗:

∗ : cj ∈ A ⇒ c∗j ∈ A, c∗∗j = cj, (c1c2)
∗ = c∗2c

∗
1, (ξcj)

∗ = ξ∗c∗j , (6.1)
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where ξ is a complex number and ξ∗ is its complex conjugate. c) It has a norm ||.|| with
the properties ||c∗|| = ||c||, ||c∗c|| = ||c||2 for c ∈ A. d) It is complete under this norm.

A ∗− representation ρ of A on a Hilbert space H is a representation of A by a C∗-
algebra of bounded operators on a Hilbert space [13] with the following features: i) The ∗
and norm for ρ(A) are the operator adjoint † and operator norm (also denoted by || · ||).
ii) ρ(c∗) = ρ(c)†.

ρ is said to be a ∗-homomorphism because of ii). We can also in a similar manner
speak of ∗-isomorphisms.

We will generally encounter A concretely as an algebra of operators. In any case, we
will usually omit the symbol ρ.

Note that a ∗-algebra (even if it is not C∗) is by definition closed under an antinvolution
∗.

Let C denote a commutative C∗-algebra. Let {x} denote its space of inequivalent
irreducible ∗-representations (IRR’s) or its spectrum. [So a ∈ C ⇒ x(a) ∈ lC.] The
Gel’fand-Naimark theory then makes the following striking assertions: α) There is a
natural topology on {x} making it into a Hausdorff topological space [14] Q0. [We will
denote the IRR’s prior to introducing topology by {x} and after doing so by Q· with
suitable superscripts.Q is the same as Q∞ below.] β) Let C0(Q) be the C∗-algebra of lC-
valued continuous functions on Q. Its ∗ is complex conjugation and its norm || · || is the
supremum norm, ||φ|| = supx∈Q0 |φ(x)|. Then C0(Q) is ∗-isomorphic to C.

We can thus identify C0(Q) with C , as we will often do.

The above results can be understood as follows. By “duality”, the collection of x(a)’s
for all x defines a function ac on {x} by ac(x) := x(a). ac is said to be the Gel’fand
transform of a.

{x} is as yet just a collection of points with no topology. How can we give it a natural
topology? We want ac to be C0 in this topology. Now the set of zeros of a continuous
function is closed. So let us identify the set of zeros Ca of each ac with a closed set:

Ca = {x : x(a) ≡ ac(x) = 0}. (6.2)

The topology we seek is given by these closed sets. The Gel’fand-Naimark theorem then
asserts α) and β) for this topology, the isomorphism C → C0(Q) being a→ ac.

A Hausdorff topological space can therefore be equally well described by a commutative
C∗ -algebra C, presented for example using generators. That would be an intrinsic
coordinate-free description of the space and an alternative to using coordinate charts.

A CK - structure can now be specified by identifying an appropriate subalgebra CK of
C ≡ C0 and declaring that the CK - structure is the one for which CK consists of K-times
differentiable functions. [CK is a ∗−, but not a C∗−, algebra for K > 0, as it is not
complete..] The corresponding CK-space is QK . For K = ∞, we get the manifold Q∞.
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We have the inclusions

C∞ ⊂ ... ⊂ CK ... ⊂ C0 ≡ C (6.3)

where

C(∞)
= C(K)

= C ≡ C, (6.4)

the bar as usual denoting closure.In contrast, Q∞ and QK are all the same as sets, being
{x}.

A dense ∗-subalgebra of a C∗-algebra C will be denoted by C·, the superscript high-
lighting some additional property. The algebras CK are such examples.

Example 1: Consider the algebra C generated by the identity, an element u and its
inverse u−1. Its elements are a =

∑

N∈ZZ αNu
N where αN ’s are complex numbers vanishing

rapidly in N at ∞. The ∗ is defined by u∗ = u−1, a∗ =
∑
a∗Nu

−N . As C has identity 1l
, there is a natural way to define inverse a−1 too : a−1 is that element of C such that
a−1a = aa−1 = 1l. There is also a canonical norm ||.|| compatible with properties c) [8, 10]:
||a|| = Maximum of |λ| such that a∗a− |λ|2 has no inverse.

The space Q for this C is just the circle S1, uc being the function with value eiθ at
eiθ ∈ S1.

If similarly we consider the algebra associated with N commuting unitary elements,
we get the N -torus TN . If for N = 2, the generating unitary elements do not commute,
but fulfill u1u2 = ωu2u1, ω being any phase, we get the noncommutative torus [15, 8]. It
is the “rational” or “fuzzy” torus if ωK = 1 for some K ∈ ZZ, otherwise it is “irrational”
[12, 16].

7 States and Observables

The formulation of quantum physics best suited for the current discussion is based on
the algebra B of bounded observables and states ω on B. B has a *-operation ( anti-
involution) and ω(b) ∈ lC for b ∈ B with ω(b∗b) ≥ 0, ω(1l) = 1. ω can be thought of as
the density matrix describing the ensemble and b the operator whose mean value is being
measured. The Gel’fand-Naimark-Segal (GNS) construction lets us recover the Hilbert
space formulation from ω and b.
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8 Instantaneous Measurements and Classical Topol-

ogy

Time in conventional quantum physics has a unique role.It is not a quantum variable,
and all elementary quantum observations are instantaneous.

Now elementary measurements-those instantaneous in time- can only measure com-
muting observables.Thus the probabilty of finding the value a for the observable A at time
t− ǫ and then b for B at t + ǫ is ω(Pa(t− ǫ)Pb(t+ ǫ)Pa(t + ǫ)),where Pa,b are projectors
at indicated times. If the order is reversed, the answer is ω(Pa(t − ǫ)Pb(t + ǫ)Pa(t + ǫ))
. They do not coincide as ǫ → 0 unless Pa(t)Pb(t) = Pb(t)Pa(t), that is AB = BA.As
experiments cannot resolve time sequence if ǫ is small enough, we cannot consistently
assign joint probabilities to noncommuting observables in elementary measurements.

Thus from instantaneous measurements, we can extract commutative C∗-algebras and
therefrom Hausdorff topological spaces.

If “commutation” is classical, then instantaneous measurements and Hausdorff spaces
( the stuff of manifolds ) are also partners in this classicality.

It is known that a state ω restricted to a commutative C∗-algebra is equivalent to a
classical probabilty measure on its underlying topological space. As a wave function |ψ >
thus is equivalent to a classical probability measure for an instantaneous measurement
(which any way is the only sort of measurement discussed in usual quantum physics), there
is no need to invoke “collapse of wave packets” or similar hypotheses for its interpretation.
The uniqueness of quantum measurement theory then consists in the special relations it
predicts between outcomes of measurements of different commutative algebras C1 and C2.
These relations are often universal, being independent of the state vector |ψ >.

Such a point of view of quantum physics, or at least a view close to it, has been
advocated especially by Sorkin [17].

Thus we see that instantaneous measurements are linked both to classical topology
and to classical measurement theory.

But surely the notion of instantaneous measurements can only be an idealization.
Measurements must be extended in time too, just as they are extended in space. But we
know of no fully articulated theory of measurements extended in time, and maintaining
quantum coherence during its duration, although interesting research about these matters
exists [18].

A quantum theory of measurements extended in time, with testable predictions, could
be of fundamental importance. We can anticipate that it will involve noncommutative
algebras N instead of commutative algebras, the hermitean form ψ†χ for the appropriate
vectors ψ, χ in the Hilbert space being valued in N . Such quantum theories were encoun-
tered in [2]. Mathematical tools for their further development are probably available in
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Noncommutative Geometry [8, 9, 10, 11, 12].

But we are hardly done , we do not have Q as a manifold , or its dimension etc.

9 What Time Evolution Tells Us

Time evolution U(t) evolves all observables B ≡ B(0) continuously in conventional quan-
tum physics:ω(U(t)−1bU(t)) is continuous in t for all b ∈ B(0).

Let B(1) ⊂ B(0) be the subset of B(0) with differentiable time evolution.The Hamiltonian
H is defined only on B(1): If b(t) = U(t)−1b(0)U(t) ∈ B(1) , then idb(t)/dt = [b(t), H ]. For
example, for H = p2/2m plus a smooth potential V (x),B(1) contains twice-differentiable
functions of x. For D = −iα.∂, it has C1 functions.

K-times differentiabilty in this way gives B(K) with inclusions ... ⊂ B(K) ⊂ B(K−1) ⊂
... ⊂ B(0).

Let B(∞)=
⋂B(K).From B(∞),we have to extract a subalgebra which helps us recon-

struct the spatial slice Q with its differential structure,dimension etc. The criterion to do
so may be a weak form of relativistic causality. In relativity,if an observable is localised
in a spatial region D at time zero, its support Dt at time t is within the future light cone
of D.This means in particular that as t → 0, Dt → D0 = D.There is no spread all over
in infinitesimal times. Such a constraint is compatible with H having a finite number
of spatial derivatives. Relativistic causality for example is violated by the Hamiltonian
(p2 +m2)1/2 whereas the Dirac operator is of first order and causal.

If H is of first order and f and g are functions,then [[H, f ], g] = 0. This is
so for example for the Dirac Hamiltonian. More generally,if H is of finite order,
[[H, f1], f2], f3]..., fK ]] = 0 for a finite K.All this suggests the

Definition: A commutative subalgebra C(∞) of B(∞) is weakly causal if, for fi ∈ C(∞),
[[H, f1], f2], f3]..., fK ]] = 0 for some K.

This pale form of causality can be valid generically only for functions on a spatial
manifold M . For example, the Hamiltonian of a simple harmonic oscillator fulfills this
criterion in both position and momentum space.

Conjecture: C(∞) determines M and its C∞-structure by the analogue of a Gel’fand-
Neumark construction.

If B(K) is substituted for B(∞) and a corresponding C(K) is extracted, the latter will
fix only the CK-structure of Q. Requiring just continuity , we can recover Q only as a
topological space.

We can expand observables in eigenstates of H : b(t) =
∑
bne

iωnt, with ‖ b(t) ‖2≡
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ω(b(t)∗b(t)) <∞.From dKb(t)/dtK =
∑
(iω)Kbne

iωnt, we see that requiring convergence of
r.h.s. in norm for high K suppresses high frequencies.(We are ignoring issues of null states
of ω here.)Thus low energy observations recover Q with its C∞- structure. But as higher
and higher energies are observed, that is, as shorter and shorter time scales are resolved,Q
gets more rough, retaining progressively less of its differentable structure. Eventually for
nondifferentiable b, Q is just a topological space and retains no differentiable structure.

The situation is in fact more dramatic.The algebra giving Q as a topological space is
the C∗-algebra of continuous functions C(0).The maximum commutative C∗-algebra C(0)′′

containing C(0) does not give Q as a topological space modelled on a manifold.

Much of what we discussed above is based on spectral considerations, suggesting that
more remarks are necessary as regards isospectral manifolds. We will not however under-
take this task here.

10 Dimension and Metric

Suppose that Q has been recovered as a manifold. We can then find its dimension in the
usual way.

There is also a novel manner to find its dimension d from the spectrum {λn} of H : If
H is of order N , |λn| grows like nN/d as n→ ∞ [8, 9, 10, 19].

We can find a metric as well for Q [8, 10, 19]: It is specified by the distance

d(x, y) = {sup
a

|ac(x)− ac(y)| :
1

N !
|| [a, [a, . . . [a,H ] . . .]
︸ ︷︷ ︸

N a′s

|| ≤ 1}. (10.1)

This remarkable formula gives the usual metric for the Dirac operator [N = 1] [8, 9] and
the Laplacian [N = 2] [19].

11 What is Quantum Topology?

A question of the following sort often suggests itself when encountering discussions of
topology in quantum gravity: If Q is a topological space, possibly with additional differ-
ential and geometric structures [“classical” data], what is meant by quantizing Q?
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It is perhaps best understood as: finding an algebra of operators on a Hilbert space
from which Q and its attributes can be reconstructed [much as in the Gel’fand-Naimark
theorem].

12 Topology Change

We now use the preceding ideas to discuss topology change, following ref. 3. [See ref. [20]
for related work.]

There are indications from theoretical considerations that spatial topology in quan-
tum gravity cannot be a time-invariant attribute, and that its transmutations must be
permitted in any eventual theory.

The best evidence for the necessity of topology change comes from the examination
of the spin-statistics connection for the so-called geons [21, 22, 23, 24, 25]. Geons are
solitonic excitations caused by twists in spatial topology. In the absence of topology
change, a geon can neither annihilate nor be pair produced with a partner geon, so that
no geon has an associated antigeon.

Now spin-statistics theorems generally emerge in theories admitting creation-
annihilation processes [22, 23, 26]. It can therefore be expected to fail for geons in gravity
theories with no topology change. Calculations on geon quantization in fact confirm this
expectation [22, 27].

The absence of a universal spin-statistics connection in these gravity theories is much
like its absence for a conventional nonrelativistic quantum particle which too cannot be
pair produced or annihilated. Such a particle can obey any sort of statistics including
parastatistics regardless of its intrinsic spin. But the standard spin-statistics connec-
tion can be enforced in nonrelativistic dynamics also by introducing suitable creation-
annihilation processes [28].

There is now a general opinion that the spin-statistics theorem should extend to gravity
as well. Just as this theorem emerges from even nonrelativistic physics once it admits
pair production and annihilation [23], quantum gravity too can be expected to become
compatible with this theorem after it allows suitable topology change [26]. In this manner,
the desire for the usual spin-statistics connection leads us to look for a quantum gravity
with transmuting topology.

Canonical quantum gravity in its elementary form is predicated on the hypothesis that
spacetime topology is of the form Σ×R (with R accounting for time) and has an eternal
spatial topology. This fact has led to numerous suggestions that conventional canonical
gravity is inadequate if not wrong, and must be circumvented by radical revisions of
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spacetime concepts [29], or by improved approaches based either on functional integrals
and cobordism [26] or on alternative quantization methods.

Ideas on topology change were first articulated in quantum gravity, and more specifi-
cally in attempts at semiclassical quantization of classical gravity. Also it is an attribute
intimately linked to gravity in the physicist’s mind. These connections and the apparently
revolutionary nature of topology change as an idea have led to extravagant speculations
about twinkling topology in quantum gravity and their impact on fundamental concepts
in physics.

Here we show that models of quantum particles exist which admit topology change
or contain states with no well-defined classical topology. This is so even though gravity
does not have a central role in our ideas and is significant only to the extent that metric
is important for a matter Hamiltonian. These models use only known physical principles
and have no revolutionary content, and at least suggest that topology change in quantum
gravity too may be achieved with a modest physical input and no drastic alteration of
basic laws.

We consider particle dynamics. The configuration space of a particle being ordinary
space, we are thus imagining a physicist probing spatial topology using a particle.

Let us consider a particle with no internal degrees of freedom living on the union Q′

of two intervals which are numbered as 1 and 2:

Q′ = [0, 2π]
⋃

[0, 2π] ≡ Q′
1

⋃

Q′
2 . (12.1)

It is convenient to write its wave function ψ as (ψ1, ψ2), where each ψi is a function on
[0, 2π] and ψ∗

i ψi is the probability density on Q′
i. The scalar product between ψ and

another wave function χ = (χ1, χ2) is

(ψ, χ) =
∫ 2π

0
dx
∑

i

(ψ∗
i χi)(x) . (12.2)

It is interesting that we can also think of this particle as moving on [0, 2π] and having
an internal degree of freedom associated with the index i.

After a convenient choice of units, we define the Hamiltonian formally by

(Hψ)i(x) = −d
2ψi

dx2
(x) (12.3)

[where ψi is assumed to be suitably differentiable in the interval [0, 2π]]. This definition is
only formal as we must also specify its domain H1 [13]. The latter involves the statement
of the boundary conditions (BC’s) at x = 0 and x = 2π.

Arbitrary BC’s are not suitable to specify a domain: A symmetric operator O with
domain D(O) will not be self-adjoint unless the following criterion is also fulfilled:

11



BO(ψ, χ) ≡ (ψ,Oχ)− (O†ψ, χ) = 0 for all χ ∈ D(O) ⇔ ψ ∈ D(O) . (12.4)

For the differential operator H , the form BH(·, ·) is given by

BH(ψ, χ) =
2∑

i=1

[

−ψ∗
i (x)

dχi(x)

dx
+
dψ∗

i (x)

dx
χi(x)

]2π

0

. (12.5)

It is not difficult to show that there is a U(4) worth of D(H) ≡ H1 here compatible with
(12.4).

We would like to restrict this enormous choice for D(H), our intention not being to
study all possible domains for D(H). So let us restrict ourselves to the domains

Du = {ψ ∈ C2(Q′) : ψi(2π) = uijψj(0),
dψi

dx
(2π) = uij

dψj

dx
(0), u ∈ U(2)} . (12.6)

These domains have the virtue of being compatible with the definition of momentum in
the sense discussed in ref. 2.

There are two choices of u which are of particular interest:

a) ua =

(

0 eiθ12

eiθ21 0

)

, (12.7)

b) ub =

(

eiθ11 0
0 eiθ22

)

. (12.8)

In case a, the density functions ψ∗
i χi fulfill

(ψ∗
1χ1)(2π) = (ψ∗

2χ2)(0) , (12.9)

(ψ∗
2χ2)(2π) = (ψ∗

1χ1)(0) . (12.10)

Figure 1 displays (12.10), these densities being the same at the points connected by broken
lines.

In case b, they fulfill, instead,

(ψ∗
1χ1)(2π) = (ψ∗

1χ1)(0) , (12.11)

(ψ∗
2χ2)(2π) = (ψ∗

2χ2)(0) (12.12)
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0

0

Figure 1: In case a, the density functions are the same at the points joined by broken
lines in this Figure.

0

0

Figure 2: In case b, the density functions are the same at the points joined by broken
lines in this Figure.
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which fact is shown in a similar way in Figure 2.

Now if ψ∗
i , χi ∈ Du,then ψ∗

i χi ∈ C(0) in the operator-theoretic approach used ear-
lier.Such probabilty densities in fact generate C(0).Therefore their continuity properties
determine the topology of the space to be identified as Q.It follows that we can identify
the points joined by dots to get the classical configuration space Q if u = ua or ub. It is
not Q′, but rather a circle S1 in case a and the union S1⋃S1 of two circles in case b.

The requirement HMD∞
u ⊆ D∞

u ⊂ Du for u = ua,b and for all M ∈ IN implies that
arbitrary derivatives of ψ∗

i χi ∈ D∞
u are continuous at the points joined by broken lines,

that is on S1 and S1⋃S1 for the two cases. We can prove this easily using (12.6). In this
way, from D∞

u , we also recover S1 and S1⋃S1 as manifolds.

When u has neither of the values (12.7) and (12.8), then Q becomes the union of two
intervals. The latter happens for example for

u =
1√
2

(

1 1
−1 1

)

. (12.13)

In all such cases, Q can be regarded as a manifold with boundaries as shown by the
argument above.

Dynamics for Boundary Conditions

We saw in the previous section that topology change can be achieved in quantum
physics by treating the parameters in the BC’s as suitable external parameters which can
be varied.

However it is not quite satisfactory to have to regard u as an external parameter and
not subject it to quantum rules. We now therefore promote it to an operator, introduce its
conjugate variables and modify the Hamiltonian as well to account for its dynamics. The
result is a closed quantum system. It has no state with a sharply defined u. We cannot
therefore associate one or two circles with the quantum particle and quantum spatial
topology has to be regarded as a superposition of classical spatial topologies. Depending
on our choice of the Hamiltonian, it is possible to prepare states where topology is peaked
at one or two S1’s for a long time, or arrange matters so that there is transmutation from
one of these states to another.

Quantization of u is achieved as follows. Let T (α) be the antihermitean generators of
the Lie algebra of U(2) [the latter being regarded as the group of 2× 2 unitary matrices]
and normalized according to Tr T (α)T (β) = −Nδαβ , N being a constant. Let û be the
matrix of quantum operators representing the classical u. It fulfills

ûijû
†
ik = 1δjk, [ûij, ûkh] = 0 , (12.14)
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û†ik being the adjoint of ûik. The operators conjugate to û will be denoted by Lα. If

[Tα, Tβ] = cγαβTγ , (12.15)

cγαβ = structure constants of U(2), (12.16)

Lα has the commutators
[Lα, û] = −T (α)û , (12.17)

[Lα, Lβ] = cγαβLγ, (12.18)

[T (α)û]ij ≡ T (α)ikûkj. (12.19)

If V̂ is the quantum operator for a function V of u, [Lα, V̂ ] is determined by (12.17)
and (12.18).

The Hamiltonian for the combined particle-u system can be taken to be, for example,

Ĥ = H +
1

2I

∑

α

L2
α, (12.20)

I being the moment of inertia.

Quantized BC’s with a particular dynamics are described by (12.14), (12.17),(12.18)
and (12.20).

The general state vector in the domain of Ĥ is a superposition of state vectors φ⊗C |u〉
where φ ∈ Du and |u〉 is a generalized eigenstate of û:

ûij|u〉 = uij|u〉, 〈u′|u〉 = δ(u′−1u) . (12.21)

The δ-function here is defined by

∫

duf(u)δ(u′−1u) = f(u′), (12.22)

du being the (conveniently normalized) Haar measure on U(2).

It follows that the classical topology of one and two circles is recovered on the states
∑

λCλφ
(λ)
ua

⊗C |ua〉 and
∑

λDλφ
(λ)
ub

⊗C |ub〉, [Cλ, Dλ ∈ lC, φ(λ)
ua,b

∈ Dua,b
] with the two fixed

values ua, and ub of (12.7) and (12.8) for u.

As the dynamical system has been enhanced by U(2), the configuration space we
recover is not Q in the strict sense,but rather Q × U(2). But we will refer to only Q as
the configuration space below as a matter of convenience.
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Now the above vectors are clearly idealized and unphysical , and with infinite norm.
The best we can do with normalizable vectors to localize topology around one or two
circles is to work with the wave packets

∫

duf(u)φu ⊗C |u〉 , (12.23)

∫

φu ∈ Du, (12.24)

∫

du|f(u)|2 <∞ (12.25)

where f is sharply peaked at the u for the desired topology. The classical topology
recovered from these states will only approximately be one or two circles, the quantum
topology also containing admixtures from neighboring topologies of two intervals.

A localized state vector of the form (12.25) is not as a rule an eigenstate of a Hamil-
tonian like Ĥ. Rather it will spread in course of time so that classical topology is likely
to disintegrate mostly into that of two intervals. We can of course localize it around one
or two S1’s for a very long time by choosing I to be large, the classical limit for topology
being achieved by letting I → ∞. By adding suitable potential terms, we can also no
doubt arrange matters so that a wave packet concentrated around u = ua moves in time
to one concentrated around u = ub. This process would be thought of as topology change
by a classical physicist.

The preceding considerations on topology change admit generalizations to higher di-
mensions as explained in ref.3.

13 Final Remarks

In this article we have touched upon several issues concerning quantum topology and
showed their utility for research of current interest such as topology change and fuzzy
topology. Our significant contribution, if any, here has been in formulating new funda-
mental problems with reasonable clarity. We have also sketched a few answers, but they
are tentative and incomplete.
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