16 research outputs found

    Generalized Slater-Pauling rule for the inverse Heusler compounds

    Get PDF
    We present extensive first-principles calculations on the inverse full-Heusler compounds having the chemical formula X2_2YZ where (X = Sc, Ti, V, Cr or Mn), (Z = Al, Si or As) and the Y ranges from Ti to Zn. Several of these alloys are identified to be half-metallic magnets. We show that the appearance of half-metallicity is associated in all cases to a Slater-Pauling behavior of the total spin-magnetic moment. There are three different variants of this rule for the inverse Heusler alloys depending on the chemical type of the constituent transition-metal atoms. Simple arguments regarding the hybridization of the d-orbitals of neighboring atoms can explain these rules. We expect our results to trigger further experimental interest on this type of half-metallic Heusler compounds.Comment: 5 pages, 3 figures, 1 tabl

    Search for spin gapless semiconductors: The case of inverse Heusler compounds

    Get PDF
    We employ ab-initio electronic structure calculations to search for spin gapless semiconductors, a recently identified new class of materials, among the inverse Heusler compounds. The occurrence of this property is not accompanied by a general rule and results are materials specific. The six compounds identified show semiconducting behavior concerning the spin-down band structure and in the spin-up band structure the valence and conduction bands touch each other leading to 100% spin-polarized carriers. Moreover these six compounds should exhibit also high Curie temperatures and thus are suitable for spintronics applications.Comment: Submitted to Applied Physics Letter
    corecore