13 research outputs found

    Hydrothermal Resource-saving Processes in Complex Processing of Bauxite and Red Mud

    Get PDF
    The Bayer bauxite residue (red mud, RM) is environmentally hostile and hazardous to human health. Red mud can be viewed as an important and promising source of scandium, yttrium, zirconium and other elements rather than a solid waste. Due to a high content of iron in bauxites and especially in RM, the conversion of hematite into magnetite in Bayer liquor plays a key role in the exploration of a cleaner technology of alumina production. Thus, RM and raw bauxite were used for hydrothermal digestion in an original one-stage method of magnetite production during co-recovery of alumina. The yield of alumina reaches 80% from RM and more from bauxites during digestion with addition of lime and Fe(II) or Fe . The saturation magnetization of a bulk sample of magnetized bauxite is 40.5 emu/g, two orders of magnitude higher than that of a raw red mud sample. Moreover, magnetite containing a residue has a high crystallinity, which contributes to better deposition and magnetic separation in the development of an overall flowsheet for RM utilization. Keywords: Red mud, bauxite, hydrothermal treatment; enrichment, extraction, magnetization, hematite, magnetite, rare element

    Russian Works on China, 1918–1958 a Selected Bibliography

    No full text

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore