187 research outputs found

    In silico identification of microRNAs predicted to regulate the drug metabolizing cytochrome P450 genes

    Get PDF
    OBJECTIVE: Cytochrome P450 (CYP) enzymes exhibit high interindividual variability that is not completely explained by known environmental and genetic factors. To further understand this variability, we hypothesized that microRNAs (miRNAs) may regulate CYP expression. METHODS: MiRNA identification algorithms were used to identify the miRNAs that are predicted to regulate twelve major drug metabolizing CYPs and to identify polymorphisms in CYP mRNA 3'-UTRs that are predicted to interfere with normal mRNA-miRNA interactions. RESULTS: All twelve CYPs were predicted to be targets of miRNAs. Additionally, 38 SNPs in CYP mRNA 3'-UTRs were predicted to interfere with miRNA targeting of mRNAs. These predicted miRNAs and SNPs are candidates for future in vitro studies focused on understanding the molecular regulation of these CYP genes. CONCLUSION: These in silico results provide strong support for a role of miRNA in the regulation and variability of CYP expression

    A translational bioinformatic approach in identifying and validating an interaction between Vitamin A and CYP19A1

    Get PDF
    INTRODUCTION: One major challenge in personalized medicine research is to identify the environmental factors that can alter drug response, and to investigate their molecular mechanisms. These environmental factors include co-medications, food, and nutrition or dietary supplements. The increasing use of dietary supplements and their potential interactions with cytochrome P450 (CYP450) enzymes is a highly significant personalized medicine research domain, because most of the drugs on the market are metabolized through CYP450 enzymes. METHODS: Initial bioinformatics analysis revealed a number of regulators of CYP450 enzymes from a human liver bank gene expression quantitative loci data set. Then, a compound-gene network was constructed from the curated literature data. This network consisted of compounds that interact with either CYPs and/or their regulators that influence either their gene expression or activity. We further evaluated this finding in three different cell lines: JEG3, HeLa, and LNCaP cells. RESULTS: From a total of 868 interactions we were able to identify an interesting interaction between retinoic acid (i.e. Vitamin A) and the aromatase gene (i.e. CYP19A1). Our experimental results showed that retinoic acid at physiological concentration significantly influenced CYP19A1 gene expressions. CONCLUSIONS: These results suggest that the presence of retinoic acid may alter the efficacy of agents used to suppress aromatase expression

    PASSPORT-seq: A Novel High-Throughput Bioassay to Functionally Test Polymorphisms in Micro-RNA Target Sites

    Get PDF
    Next-generation sequencing (NGS) studies have identified large numbers of genetic variants that are predicted to alter miRNA-mRNA interactions. We developed a novel high-throughput bioassay, PASSPORT-seq, that can functionally test in parallel 100s of these variants in miRNA binding sites (mirSNPs). The results are highly reproducible across both technical and biological replicates. The utility of the bioassay was demonstrated by testing 100 mirSNPs in HEK293, HepG2, and HeLa cells. The results of several of the variants were validated in all three cell lines using traditional individual luciferase assays. Fifty-five mirSNPs were functional in at least one of three cell lines (FDR ≤ 0.05); 11, 36, and 27 of them were functional in HEK293, HepG2, and HeLa cells, respectively. Only four of the variants were functional in all three cell lines, which demonstrates the cell-type specific effects of mirSNPs and the importance of testing the mirSNPs in multiple cell lines. Using PASSPORT-seq, we functionally tested 111 variants in the 3' UTR of 17 pharmacogenes that are predicted to alter miRNA regulation. Thirty-three of the variants tested were functional in at least one cell line

    Common genetic polymorphisms of adenosine A2A receptor do not influence response to regadenoson

    Get PDF
    Aim: Hemodynamic response to regadenoson varies greatly, and underlying mechanisms for variability are poorly understood. We hypothesized that five common variants of adenosine A2A receptor (ADORA2A) are associated with altered response to regadenoson. Methods: Consecutive subjects (n = 357) undergoing resting regadenoson nuclear stress imaging were enrolled. Genotyping was performed using Taqman-based assays for rs5751862, rs2298383, rs3761422, rs2267076 and rs5751876. Results: There was no significant difference in heart rate or blood pressure between different genotypes following regadenoson administration. There was also no significant difference in myocardial ischemia detected by nuclear perfusion imaging as defined by summed difference score, or in self-reported side effects among the genotypes tested. Conclusion: The common A2A variants studied are not associated with variability in hemodynamic response to regadenoson or variability in detection of ischemia with nuclear perfusion stress imaging

    Carboplatin with Decitabine Therapy, in Recurrent Platinum Resistant Ovarian Cancer, Alters Circulating miRNAs Concentrations: A Pilot Study

    Get PDF
    OBJECTIVE: Plasma miRNAs represent potential minimally invasive biomarkers to monitor and predict outcomes from chemotherapy. The primary goal of the current study-consisting of patients with recurrent, platinum-resistant ovarian cancer-was to identify the changes in circulating miRNA concentrations associated with decitabine followed by carboplatin chemotherapy treatment. A secondary goal was to associate clinical response with changes in circulating miRNA concentration. METHODS: We measured miRNA concentrations in plasma samples from 14 patients with platinum-resistant, recurrent ovarian cancer enrolled in a phase II clinical trial that were treated with a low dose of the hypomethylating agent (HMA) decitabine for 5 days followed by carboplatin on day 8. The primary endpoint was to determine chemotherapy-associated changes in plasma miRNA concentrations. The secondary endpoint was to correlate miRNA changes with clinical response as measured by progression free survival (PFS). RESULTS: Seventy-eight miRNA plasma concentrations were measured at baseline (before treatment) and at the end of the first cycle of treatment (day 29). Of these, 10 miRNAs (miR-193a-5p, miR-375, miR-339-3p, miR-340-5p, miR-532-3p, miR-133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p, and miR-148b-5p) displayed fold changes in concentration ranging from -2.9 to 4 (p<0.05), in recurrent platinum resistant ovarian cancer patients, that were associated with response to decitabine followed by carboplatin chemotherapy. Furthermore, lower concentrations of miR-148b-5p after this chemotherapy regimen were associated (P<0.05) with the PFS. CONCLUSIONS: This is the first report demonstrating altered circulating miRNA concentrations following a combination platinum plus HMA chemotherapy regiment. In addition, circulating miR-148b-5p concentrations were associated with PFS and may represent a novel biomarker of therapeutic response, with this chemotherapy regimen, in women with recurrent, drug-resistant ovarian cancer

    Adherence and Tolerability of Alzheimer's Disease Medications: A Pragmatic Randomized Trial

    Get PDF
    BACKGROUND/OBJECTIVES: Post-marketing comparative trials describe medication use patterns in diverse, real-world populations. Our objective was to determine if differences in rates of adherence and tolerability exist among new users to acetylcholinesterase inhibitors (AChEI's). DESIGN: Pragmatic randomized, open label comparative trial of AChEI's currently available in the United States. SETTING: Four memory care practices within four healthcare systems in the greater Indianapolis area. PARTICIPANTS: Eligibility criteria included older adults with a diagnosis of possible or probable Alzheimer's disease (AD) who were initiating treatment with an AChEI. Participants were required to have a caregiver to complete assessments, access to a telephone, and be able to understand English. Exclusion criteria consisted of a prior severe adverse event from AChEIs. INTERVENTION: Participants were randomized to one of three AChEIs in a 1:1:1 ratio and followed for 18 weeks. MEASUREMENTS: Caregiver-reported adherence, defined as taking or not taking study medication, and caregiver-reported adverse events, defined as the presence of an adverse event. RESULTS: 196 participants were included with 74.0% female, 30.6% African Americans, and 72.9% who completed at least twelfth grade. Discontinuation rates after 18 weeks were 38.8% for donepezil, 53.0% for galantamine, and 58.7% for rivastigmine (P = .063) in the intent to treat analysis. Adverse events and cost explained 73.1% and 25.4% of discontinuation. No participants discontinued donepezil due to cost. Adverse events were reported by 81.2% of all participants; no between-group differences in total adverse events were statistically significant. CONCLUSIONS: This pragmatic comparative trial showed high rates of adverse events and cost-related non-adherence with AChEIs. Interventions improving adherence and persistence to AChEIs may improve AD management. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01362686 (https://clinicaltrials.gov/ct2/show/NCT01362686)

    Analytical Validation of Variants to Aid in Genotype-Guided Therapy for Oncology

    Get PDF
    The Clinical Laboratory Improvement Amendments (CLIA) of 1988 requires that pharmacogenetic genotyping methods need to be established according to technical standards and laboratory practice guidelines before testing can be offered to patients. Testing methods for variants in ABCB1, CBR3, COMT, CYP3A7, C8ORF34, FCGR2A, FCGR3A, HAS3, NT5C2, NUDT15, SBF2, SEMA3C, SLC16A5, SLC28A3, SOD2, TLR4, and TPMT were validated in a CLIA-accredited laboratory. As no known reference materials were available, DNA samples that were from Coriell Cell Repositories (Camden, NJ) were used for the analytical validation studies. Pharmacogenetic testing methods developed here were shown to be accurate and 100% analytically sensitive and specific. Other CLIA-accredited laboratories interested in offering pharmacogenetic testing for these genetic variants, related to genotype-guided therapy for oncology, could use these publicly available samples as reference materials when developing and validating new genetic tests or refining current assays

    Differential quantification of CYP2D6 gene copy number by four different quantitative real-time PCR assays

    Get PDF
    Copy number variations (CNVs) in the CYP2D6 gene contribute to interindividual variation in drug metabolism. As the most common duplicated allele in Asian populations is the nonfunctional CYP2D6*36 allele, the goal of this study was to identify CNV assays that can differentiate between multiple copies of the CYP2D6*36 allele and multiple copies of other CYP2D6 alleles. We determined CYP2D6 gene copy numbers in 32 individuals with known CYP2D6 CNVs from the Coriell Japanese-Chinese panel using four quantitative real-time PCR assays. These assays target different regions of the CYP2D6 gene: 5'-flanking region, intron 2, intron 6, and exon 9 (Ex9). The specific target site of the Ex9 assay was verified by sequencing the PCR amplicon. Three of the CYP2D6 CNV assays (5'-flanking region, intron 2, and intron 6) estimated CYP2D6 copy numbers that were concordant for all 32 individuals. However, the Ex9 assay was concordant in only 10 of 32 samples. The 10 concordant samples did not contain any CYP2D6*36 alleles and the 22 discordant samples contained at least one CYP2D6*36 allele. In addition, the Ex9 assay accurately quantified all of the non-CYP2D6*36 alleles in all samples. Ex9 amplicon sequencing indicated that it targets a region of CYP2D6 exon 9 that undergoes partial gene-conversion in the CYP2D6*36 allele. In conclusion, CYP2D6 Ex9 CNV assay can be used to determine the copy number of non-CYP2D6*36 alleles. Selective amplification of non-CYP2D6*36 sequence by the Ex9 assay should be useful in determining the number of functional copies of CYP2D6 in Asian populations

    AMPD1 polymorphism and response to regadenoson

    Get PDF
    AIMS: AMPD1 c.34C > T (rs17602729) polymorphism results in AMPD1 deficiency. We examined the association of AMPD1 deficiency and variability of hemodynamic response to regadenoson. SUBJECTS & METHODS: Genotyping for c.34C>T was performed in 267 patients undergoing regadenoson cardiac stress testing. RESULTS: Carriers of c.34C >T variant exhibited higher relative changes in systolic blood pressure (SBP) compared with wild-type subjects ([%] SBP change to peak: 12 ± 25 vs 5 ± 13%; p = 0.01) ([%] SBP change to nadir: -3 ± 15 vs -7 ± 11%; p = 0.04). Change in heart rate was similar between groups, but side effects were more common in carriers of the variant (+LR = 4.2; p = 0.04). CONCLUSION: AMPD1 deficiency may be involved in the modulation of regadenoson's systemic effects

    Nephrotoxicity in a Patient With Inadequate Pain Control: Potential Role of Pharmacogenetic Testing for Cytochrome P450 2D6 and Apolipoprotein L1

    Get PDF
    A case is presented which demonstrates the perils of opioid inefficacy and how pharmacogenomic testing may have prevented nonsteroidal anti-inflammatory drug (NSAID)-induced nephrotoxicity and progression to chronic kidney disease (CKD). A 62 year-old female with back pain was treated with tramadol and hydrocodone; however, neither proved effective. Consequently, to control her pain, she resorted to cocaine, marijuana, and high dose nonsteroidal anti-inflammatory drugs (NSAIDs). She eventually developed CKD. To identify CKD contributors, she underwent genotyping for Apolipoprotein L1 (APOL1), a known risk factor of CKD, as well as relevant pharmacogenomic genes. Her APOL1 genotype was *G1(GM)/*G1(GM), placing her at increased risk of CKD progression. Her CYP2D6 genotype was *5/*17, consistent with intermediate metabolism, making opioid drugs reliant on CYP2D6 activation, such as tramadol and hydrocodone, relatively ineffective in this patient. Thus, this patient was at genetic risk for CKD and reduced opioid efficacy. We conclude that this genetic combination likely contributed to opioid inefficacy and the eventual progression to CKD
    • …
    corecore