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Abstract

OBJECTIVE—Cytochrome P450 (CYP) enzymes exhibit high interindividual variability that is 

not completely explained by known environmental and genetic factors. To further understand this 

variability, we hypothesized that microRNAs (miRNAs) may regulate CYP expression.

METHODS—MiRNA identification algorithms were used to identify the miRNAs that are 

predicted to regulate twelve major drug metabolizing CYPs and to identify polymorphisms in 

CYP mRNA 3′-UTRs that are predicted to interfere with normal mRNA-miRNA interactions.

RESULTS—All twelve CYPs were predicted to be targets of miRNAs. Additionally, 38 SNPs in 

CYP mRNA 3′-UTRs were predicted to interfere with miRNA targeting of mRNAs. These 

predicted miRNAs and SNPs are candidates for future in vitro studies focused on understanding 

the molecular regulation of these CYP genes.

CONCLUSION—These in silico results provide strong support for a role of miRNA in the 

regulation and variability of CYP expression.
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INTRODUCTION

Cytochrome P450 (CYP) is a superfamily of heme-thioloate monooxygenase enzymes that 

are involved in the oxidative metabolism of a number of endogenous and exogenous 

compounds such as steroids, drugs, carcinogens and mutagens. Within the CYP superfamily, 

the drug metabolizing enzymes (DMEs) are involved in 70–80% of all phase I dependent 

drug metabolism [1]. The expression and activity of these enzymes are highly influenced by 

both genetic and environmental factors [2]. However, even after accounting for the known 

variability, there is still substantial unexplained interindividual variability in CYP enzyme 

activity. MicroRNAs (miRNAs) have been suggested to contribute to some of this 

unexplained variability [2]. Evidence for miRNA regulation of DMEs is starting to 

accumulate. Examples include cytochrome P450 1B1 (CYP1B1) [3], cytochrome P450 2E1 
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(CYP2E1) [4], vitamin D receptor (VDR) [5], pregnane X receptor (PXR) [6] and ATP-

binding cassette xenobiotic transporter ABCG2 [7]. However, a comprehensive analysis of 

miRNAs predicted to regulate the CYPs has not been published.

MicroRNAs are small (~22 nucleotides), non-coding RNAs that regulate gene expression 

post-transcriptionally. In animals, miRNAs typically bind to the 3′-untranslated region (3′-

UTR) of the messenger RNAs (mRNAs) and negatively regulate gene expression either by 

blocking protein translation or by degrading the mRNA [8]. As more miRNAs are identified 

and studied, newer target sites and functions are being recognized. For example, it has now 

been shown that miRNAs can also bind to coding regions and repress gene expression [9]; 

this mechanism may explain some of the differential expression seen in mRNA splice 

variants. MiRNAs also appear to be involved in the induction of gene expression; this 

induction occurs through binding to complementary regions in the promoter [10] and the 5′-

UTR [11]. In humans, 940 mature miRNAs have been reported so far (version 15 of 

microCosm release [12]). Bioinformatic predictions suggest that miRNAs can control 90% 

of human transcripts [13]. These miRNAs form a broad and complex regulatory network as 

each miRNA can regulate multiple genes and each gene can be regulated by multiple 

miRNAs. MicroRNAs are involved in a wide range of biological activities including cell 

differentiation, cell death, cancer and noncancerous human diseases [14].

Single nucleotide polymorphisms (SNPs) that occur either on the miRNA or on the mRNA 

(at or near the miRNA target site) can alter miRNA gene processing or affect the normal 

mRNA-miRNA interactions, respectively. These SNPs, referred to as miRSNPs [15], can 

create new miRNA target sites or destroy old target sites. Such loss or gain of miRNA 

targeting by miRSNPs can result in the development of drug resistance. Thus, miRSNPs 

represent another potential mechanism that may contribute to the inherited interindividual 

variability in CYP enzyme expression and activity.

In this study, we hypothesized that miRNAs regulate the expression of CYPs. In the first 

step in testing this overall hypothesis, we performed a comprehensive bioinformatic analysis 

to identify miRNAs that are predicted to target twelve of the major drug metabolizing CYPs. 

We also used bioinformatic algorithms to identify polymorphisms in the CYP 3′-UTR that 

are predicted to alter the normal mRNA-miRNA interactions. The results of the in silico 

analysis collectively suggest that miRNAs are likely to play an important role in the 

regulation of drug metabolism. These results provide a candidate list of miRNAs and SNPs 

that will be useful in testing and understanding the molecular regulation of the CYP genes.

METHODS

Bioinformatic analysis to predict microRNAs that target the CYPs

We used six different web-based bioinformatic algorithms to predict the miRNAs that target 

twelve of the major drug metabolizing CYPs. The programs are:

a. miRanda [14] (http://www.microrna.org/microrna/getGeneForm.do),

b. microCosm Targets [12] (http://www.ebi.ac.uk/enright-srv/microCosm/htdocs/

targets/v5/; formerly referred to as miRBase Targets),
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c. TargetScan [16] (http://www.targetscan.org/),

d. PicTar [17] (http://pictar.mdc-berlin.de/),

e. RNA22 [13] (http://cbcsrv.watson.ibm.com/rna22.html), and

f. PITA [18] (http://genie.weizmann.ac.il/pubs/mir07/index.html).

Analysis using these programs were performed using the default parameters. In brief, for 

miRanda and microCosm Targets, homo sapiens parameter was selected. For TargetScan, 

both conserved and non-conserved miRNAs were included in analysis For PITA, a 

minimum seed of 8 nucleotides, without any mismatches, a single G:U base pairing, and no 

flank was selected. For RNA22, which is a downloadable program with user defined mRNA 

and miRNA sequences, the CYP gene reference sequence identification numbers were 

identified from the Human Cytochrome P450 Allele Nomenclature Committee home page 

(www.cypalleles.ki.se/) when available, and then the UCSC Genome Browser (http://

genome.ucsc.edu/cgi-bin/hgGateway) was used to identify the 3′-UTR sequence. The 

mature miRNA sequences (version 15.0) were downloaded from the microCosm database 

[12]. The parameters for analysis included, 0 unpaired bases in a 6 nucleotide seed, with a 

minimum of paired-up bases in heteroduplex, and a maximum folding energy of −25 

Kcal/mol for the heteroduplex.

Identification of SNPs located in the CYP 3′-UTR

SNPs in the CYP mRNA 3′-UTR were identified using the dbSNP database (http://

www.ncbi.nlm.nih.gov/projects/SNP/) and the UCSC Genome Browser (http://

genome.ucsc.edu/cgi-bin/hgGateway). The minor allele frequencies (MAF) were obtained 

from the dbSNP database.

Bioinformatic analysis to predict the effect of CYP 3′-UTR SNPs on mRNA-miRNA 
interactions

Two programs, (a) Patrocles database [19] (http://www.patrocles.org/Patrocles_targets.htm), 

and (b) PolymiRTS database [20] (http://compbio.uthsc.edu/miRSNP/) were used to predict 

the effect of SNPs in the CYP mRNA 3′-UTR on the mRNA-miRNA interaction.

RESULTS

In silico analyses to predict miRNAs that target CYPs

Six bioinformatic algorithms were used to identify miRNAs that are predicted to target 

twelve of the major drug metabolizing CYP enzymes. These algorithms predicted that all the 

twelve genes were targets of miRNAs (Table 1 and Supplementary Table 1); while some 

genes were predicted to be targeted by many miRNAs, others were predicted to be targeted 

by relatively few miRNAs. The number of miRNAs predicted to target each gene appears to 

be correlated with the length of the 3′-UTR (r2 = 0.9).

In silico analyses to predict the effect of CYP 3′-UTR SNPs in the miRNA target sites

Thirty eight SNPs were identified in the 3′-UTR of the CYPs that are predicted to alter 

miRNA targeting of these genes (Table 2). The algorithms predicted that 22 miRNA target 
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sites are destroyed by SNPs, 22 new miRNA target sites are created by SNPs, and 2 SNPs 

simultaneously created 2 new target sites and destroyed 2 target sites.

DISCUSSION

The drug metabolizing CYPs are involved in the metabolism of a number of clinically 

important drugs [1]. However, there is considerable interindividual variability in the activity 

of these enzymes and this consequently results in variability in both drug metabolism and 

response [2]. In this study, we performed bioinformatic analysis to investigate the role of 

microRNAs (miRNAs) in the regulation of CYP expression.

The in silico analyses indicated that all twelve of the drug metabolizing CYPs analyzed are 

likely to be regulated by miRNAs (Table 1). Some of these enzymes were predicted to be 

targeted by many miRNAs (e.g. CYP1A1, 1A2, 1B1, 2B6, 3A4); whereas others were 

predicted to be targeted by relatively few miRNAs (e.g. CYP2A6, 2D6, 2E1, 3A5). The 

intergene variability in the number of predicted miRNAs was largely explained by the length 

of the mRNA 3′UTR (r2 = 0.9). These results may provide new insights as to why the 

expression of some of the CYPs is more regulatable than others. For example, the 

expression of CYP2D6 is not generally as regulatable as some of the other genes, such as 

CYP3A4 [21]. As expected from our analysis, CYP2D6 has the shortest 3′-UTR, whereas 

CYP3A4 has a relatively long 3′-UTR. Additional functional studies will be required to 

confirm these predictions. Furthermore, the vast number of miRNAs predicted to target the 

CYP genes indicates that it is likely that many miRNAs are involved in the regulation of 

those genes.

There was also substantial variability in the number of miRNAs predicted by the different 

programs (Table 1). The total number of miRNAs predicted by two or more programs (i.e., 

the overlap percentage in Table 1) ranged from 0–23%. This variability may be due to a 

number of factors including the inherent differences in the algorithms including differences 

in parameters, such as degree of complementarity and species conservation used. For 

example, three of the programs (miRanda, microCosm and PicTar) use evolutionary 

conservation parameter. Since the CYP isoforms are not highly conserved across species 

[22], this may contribute to the inter-algorithm variation. Part of the variability may be due 

to the different microCosm releases that are used by each algorithm; they ranged from 

versions 10.1 to 15. The total number of miRNAs predicted to target these CYP genes is 

likely to change as more miRNAs are being discovered and as new prediction algorithms 

arise and as the current algorithms evolve. Although we could have used additional 

algorithms that have recently come available (e.g. MiTarget, MirTarget2), the algorithms 

used in our analyses provided substantial evidence the CYP genes are very likely to be 

targeted by multiple miRNAs. As investigators initiate studies to prioritize and test the 

miRNA–mRNA interactions in laboratories, it would be advisable to use the most up to date 

versions of the algorithms and possibly to include the additional algorithms that are 

available at that time.

In vitro laboratory evidence from published studies confirms some of our predictions. For 

example, our bioinformatic analysis using miRanda, TargetScan, and RNA22 predicted that 
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miR-27b targets CYP1B1 mRNA. MiR-27b has been shown to regulate CYP1B1 mRNA 

[3]. Similarly, our bioinformatic predictions using MicroCosm Target algorithm suggested 

that miR-378* targets CYP2E1. MiR-378 (renamed as miR-378*) has been shown to 

regulate CYP2E1 mRNA [4]. Our bioinformatic analyses provide a focused list of miRNAs 

that are candidates for regulating additional CYPs that could be tested laboratory studies to 

verify the predicted CYP-miRNA interactions.

Polymorphisms that occur either on the miRNA or on the mRNA (miRSNPs) can alter 

normal mRNA-miRNA interactions [15]. These miRSNPs can either create new miRNA 

binding sites (resulting in down regulation of the target gene expression) or destroy miRNA 

target sites (resulting in a loss of targeting and elevated expression of the target gene 

expression) and thus affect enzyme activity [15, 23]. Using two bioinformatic programs, 

PolymiRTS [20] and Patrocles [19], we identified SNPs in eight of the CYP genes that are 

predicted to alter the mRNA-miRNA interactions (Table 2).

In the prioritization of SNPs for pharmacogenetics and functional studies, polymorphisms in 

the 3′-UTRs of genes have typically not been given high priority; however, based on our in 

silico analyses, these SNPs may have important functional consequences. Previous studies 

have shown that SNPs in the 3′-UTRs of CYP19A1 [24] and CYP2A6 [25] are associated 

with altered phenotypes. Although our bioinformatic analyses suggested that these SNPs do 

not directly target ‘seed’ regions (typically nucleotides 2–8 from the 5′ end of the miRNA) 

of predicted miRNAs, SNPs in ‘non-seed’ regions can also affect mRNA-miRNA 

interaction [15]. Since both PolymiRTS and Patrocles programs do not predict loss or gain 

of mRNA-miRNA interactions due to the presence of SNPs in the ‘non-seed’ regions, 

laboratory experiments will be required to determine if they affect miRNA targeting. It is 

likely that additional SNPs will be discovered in the 1000 Genomes Project and as that data 

matures, they should also be incorporated into this type of analysis. SNPs in the mature 

miRNAs and pre-miRNA may also affect the mRNA-miRNA interaction; however, not all 

miRNAs have not been resequenced in depth and hence, these are not included in our 

current analyses.

The studies presented here are the first steps in identifying miRNAs that target the enzymes 

involved in drug disposition. From this in silico analysis, miRNAs and SNPs can be 

prioritized for further in vitro functional studies (luciferase assay, western blotting, mRNA 

quantification, etc) to validate the bioinformatic predictions. Similar to miRNA regulation of 

drug metabolizing CYPs, recent studies also suggest that other genes involved in drug 

disposition, including Phase II enzymes, drug targets, and other drug transporters can also be 

regulated by miRNAs [3, 5–7]. As with any bioinformatics predictions, these studies will 

need to be confirmed with laboratory experiments. This would apply to both the 

identification of the targets and the effects of the SNPs. As more additional SNP data is 

generated (e.g. 1000 Genomes Project), those data will also need to be included in the 

miRSNP analyses.
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CONCLUSION

In conclusion, the results of our in silico analyses indicate that miRNAs are likely to be an 

important mechanism that control CYP expression, and consequently drug metabolism. This 

would add at least two additional sources of variability that would affect drug metabolism. 

First, genetic variants that affect the CYP–miRNA interactions. The variants could be in 

either the CYP or the miRNA genes. Second, environmental factors that alter miRNA 

expression could have profound indirect effects on CYP expression.
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