92 research outputs found

    miRNA-mRNA-protein dysregulated network in COPD in women

    Get PDF
    Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease caused by a multitude of underlying mechanisms, and molecular mechanistic modeling of COPD, especially at a multi-molecular level, is needed to facilitate the development of molecular diagnostic and prognostic tools and efficacious treatments.Objectives: To investigate the miRNA-mRNA-protein dysregulated network to facilitate prediction of biomarkers and disease subnetwork in COPD in women.Measurements and Results: Three omics data blocks (mRNA, miRNA, and protein) collected from BAL cells from female current-smoker COPD patients, smokers with normal lung function, and healthy never-smokers were integrated with miRNA-mRNA-protein regulatory networks to construct a COPD-specific dysregulated network. Furthermore, downstream network topology, literature annotation, and functional enrichment analysis identified both known and novel disease-related biomarkers and pathways. Both abnormal regulations in miRNA-induced mRNA transcription and protein translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A pathway is highlighted in COPD pathology.Conclusion: For the first time, a comprehensive miRNA-mRNA-protein dysregulated network of primary immune cells from the lung related to COPD in females was constructed to elucidate specific biomarkers and disease pathways. The multi-omics network provides a new molecular insight from a multi-molecular aspect and highlights dysregulated interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates new hypotheses of COPD pathology.Peer reviewe

    Platelets stimulate fibroblast-mediated contraction of collagen gels

    Get PDF
    BACKGROUND: Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) contribute to this effect. METHODS: Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing), were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β(1 )concentrations were measured in culture supernatants by ELISA. RESULTS: Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM) of initial area vs. 48.0% ± 0.4 at 48 hours; P < 0.001 and 41.5% ± 0.6 vs. 60.6% ± 0.3 at 48 hours; P < 0.001, respectively). Fixed platelets had no effect in the system. Both TGF-β(1 )and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β(1 )release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. CONCLUSION: We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury

    Fibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture

    Get PDF
    BACKGROUND: Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. METHODS: Blood monocytes from healthy donors and human fetal lung fibroblasts were cast into type I collagen gels and maintained in floating cultures for three weeks. RESULTS: Fibroblast-mediated gel contraction was initially inhibited by the presence of monocytes (P < 0.01). However, with extended co-culture, contraction of the collagen gels was greatly augmented (P < 0.01). In addition, with extended co-culture, degradation of collagen in the gels occurred. The addition of neutrophil elastase to the medium augmented both contraction and degradation (P < 0.01). Prostaglandin E(2) production was significantly increased by co-culture and its presence attenuated collagen degradation. CONCLUSION: The current study, therefore, demonstrates that interaction between monocytes and fibroblasts can contract and degrade extracellular matrix in extended culture

    Collaborative interactions between neutrophil elastase and metalloproteinases in extracellular matrix degradation in three-dimensional collagen gels

    Get PDF
    BACKGROUND: Extended culture of monocytes and fibroblasts in three-dimensional collagen gels leads to degradation of the gels (see linked study in this issue, "Fibroblasts and monocytes contract and degrade three-dimensional collagen gels in extended co-culture"). The current study, therefore, was designed to evaluate production of matrix-degrading metalloproteinases by these cells in co-culture and to determine if neutrophil elastase could collaborate in the activation of these enzymes. Since co-cultures produce prostaglandin E(2) (PGE(2)), the role of PGE(2) in this process was also evaluated. METHODS: Blood monocytes from healthy donors and human fetal lung fibroblasts were cast into type I collagen gels and maintained in floating cultures for three weeks. Matrix metalloproteinases (MMPs) were assessed by gelatin zymography (MMPs 2 and 9) and immunoblotting (MMPs 1 and 3). The role of PGE(2) was explored by direct quantification, and by the addition of exogenous indomethacin and/or PGE(2). RESULTS: Gelatin zymography and immunoblots revealed that MMPs 1, 2, 3 and 9 were induced by co-cultures of fibroblasts and monocytes. Neutrophil elastase added to the medium resulted in marked conversion of latent MMPs to lower molecular weight forms consistent with active MMPs, and was associated with augmentation of both contraction and degradation (P < 0.01). PGE(2) appeared to decrease both MMP production and activation. CONCLUSION: The current study demonstrates that interactions between monocytes and fibroblasts can mediate tissue remodeling

    Outcomes of patients with advanced idiopathic pulmonary fibrosis treated with nintedanib or pirfenidone in a real-world multicentre cohort

    Get PDF
    Background and objective Antifibrotic therapy with nintedanib or pirfenidone slows disease progression and reduces mortality in patients with idiopathic pulmonary fibrosis (IPF). However, patients with advanced IPF, as defined by forced vital capacity (FVC) < 50% and/or diffusion capacity for carbon monoxide (DLCO) < 30% of predicted, have not been included in randomized trials, and the outcomes of such patients who initiate treatment are not well understood. We determined lung function, disease progression and mortality outcomes following initiation of antifibrotic therapy in patients with advanced IPF at the time of treatment initiation compared to those with mild-moderate IPF. Methods We included 502 patients enrolled in IPF registries from four Nordic countries. Linear mixed models were used to assess change in FVC and DLCO over time. Cox proportional hazards models were used to assess transplant-free survival and progression- and transplant-free survival. Results Of 502 patients, 66 (13%) had advanced IPF. Annual change in FVC was -125 ml (95% CI -163, -87) among patients with mild-moderate IPF, and +28 ml (95% CI -96, +152) among those with advanced IPF. Advanced IPF at treatment initiation was associated with poorer transplant-free survival (hazard ratio [HR] 2.39 [95% CI 1.66, 3.43]) and progression- and transplant-free survival (HR 1.60 [95% CI 1.15, 2.23]). Conclusion In a broadly representative IPF population, patients with advanced IPF at the initiation of antifibrotic therapy did not have greater lung function decline over time compared with those with mild-moderate IPF, but had substantially higher mortality. Prospective studies are needed to determine the effect of antifibrotic therapy in patients with advanced IPF.Peer reviewe

    The viral protein corona directs viral pathogenesis and amyloid aggregation

    Get PDF
    Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid beta-peptide (A beta(42)), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.Peer reviewe

    Assessing Recent Smoking Status by Measuring Exhaled Carbon Monoxide Levels

    Get PDF
    The main expectations of applying proteomics technologies to clinical questions are the discovery of disease related biomarkers. Despite technological advancement to increase proteome coverage and depth to meet these expectations the number of generated biomarkers for clinical use is small. One of the reasons is that found potential biomarkers often are false discoveries. Small sample sizes, in combination with patient sample heterogeneity increase the risk of false discoveries. To be able to extract relevant biological information from such data, high demands are put on the experimental design and the use of sensitive and quantitatively accurate technologies. The overall aim of this thesis was to apply quantitative proteomics methods for biomarker discovery in clinical samples. A method for reducing bias by controlling for individual variation in smoking habits is described in paper I. The aim of the method was objective assessment of recent smoking in clinical studies on inflammatory responses. In paper II, the proteome of alveolar macrophages obtained from smoking subjects with and without the inflammatory lung disease chronic obstructive pulmonary disease (COPD) were quantified by two-dimensional gel-electrophoresis (2-DE). A gender focused analysis showed protein level differences within the female group, with down-regulation of lysosomal pathway and up-regulation of oxidative pathway in COPD patients. Paper III, a mass spectrometry based proteomics analysis of tumour samples, contributes to the molecular understanding of vulvar squamous cell carcinoma (VSCC) and we identified a high risk patient subgroup of HPV-negative tumours based on the expression of four proteins, further suggesting that this subgroup is characterized by an altered ubiquitin-proteasome signalling pathway. Paper III describes a data analysis workflow for the extraction of biological information from quantitative mass spectrometry based proteomics data. High patient-to-patient tumour proteome variability was addressed by using pathway profiling on individual tumour data, followed by comparison of pathway association ranks in a multivariate analysis. We show that pathway data on individual tumour level can detect subpopulations of patients and identify pathways of specific importance in pre-defined clinical groups by the use of multivariate statistics. In paper IV, the potentials and limits of quantitative mass spectrometry on clinical samples was evaluated by defining the quantitative accuracy of isobaric labels and label-free quantification. Quantification by isobaric labels in combination with pI pre-fractionation showed a lower limit of quantification (LOQ) than a label-free analysis without pI pre-fractionation, and 6-plex TMT were more sensitive than 8-plex iTRAQ. Precursor mixing measured by isolation interference (MS1 interference) is more linked to the quantitative accuracy of isobaric labels than reporter ion interference (MS2 interference). Based on that we could define recommendations for how much isolation interference that can be accepted; in our data <30% isolation interference had little effect the quantitative accuracy. In conclusion, getting biological knowledge from proteomics studies requires a careful study design, control of possible confounding factors and the use of clinical data to identify disease subtypes. Further, to be able to draw conclusions from the data, the analysis requires accurate quantitative data and robust statistical tools to detect significant protein alterations. Methods around these issues are developed and discussed in this thesis

    Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    Get PDF
    Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas
    • …
    corecore