58 research outputs found

    Electron-capture branch of 100Tc and tests of nuclear wave functions for double-beta decays

    Get PDF
    We present a measurement of the electron-capture branch of 100^{100}Tc. Our value, B(EC)=(2.6±0.4)×10−5B(\text{EC}) = (2.6 \pm 0.4) \times 10^{-5}, implies that the 100^{100}Mo neutrino absorption cross section to the ground state of 100^{100}Tc is roughly one third larger than previously thought. Compared to previous measurements, our value of B(EC)B(\text{EC}) prevents a smaller disagreement with QRPA calculations relevant to double-β\beta decay matrix elements

    High-Precision Measurement of the 19Ne Half-Life and Implications for Right-Handed Weak Currents

    Full text link
    We report a precise determination of the 19Ne half-life to be T1/2=17.262±0.007T_{1/2} = 17.262 \pm 0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current Standard Model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.Comment: 5 pages and 5 figures. Paper accepted for publication in Phys. Rev. Let

    Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Full text link
    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of ββ\beta\beta decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of 124^{124}Cs.Comment: 9 pages, 9 figure

    Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    Full text link
    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μ\mum has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx\delta E = m_0g \delta x. Here, the symbols δE\delta E, δx\delta x, m0m_0 and gg are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure
    • …
    corecore