297 research outputs found

    All Source Analysis System (ASAS): Migration from VAX to Alpha AXP computer systems

    Get PDF
    The Jet Propulsion Laboratory's (JPL's) experience migrating existing VAX applications to Digital Equipment Corporation's new Alpha AXP processor is covered. The rapid development approach used during the 10-month period required to migrate the All Source Analysis System (ASAS), 1.5 million lines of FORTRAN, C, and Ada code, is also covered. ASAS, an automated tactical intelligence system, was developed by the Jet Propulsion Laboratory for the U. S. Army. Other benefits achieved as a result of the significant performance improvements provided by Alpha AXP platform are also described

    Expression and Regulation of Cyclic Nucleotide Phosphodiesterases in Human and Rat Pancreatic Islets

    Get PDF
    As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic β-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for β-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets

    Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of dried blood spots (DBS) samples in genomic workup has been limited by the relative low amounts of genomic DNA (gDNA) they contain. It remains to be proven that whole genome amplified DNA (wgaDNA) from stored DBS samples, constitutes a reliable alternative to gDNA.</p> <p>We wanted to compare melting curves and sequencing results from wgaDNA derived from DBS samples with gDNA derived from whole blood.</p> <p>Methods</p> <p>gDNA was extracted from whole blood obtained from 10 patients with lone atrial fibrillation (mean age 22.3 years). From their newborn DBS samples, stored at -24°C, genomic DNA was extracted and whole-genome amplified in triplicates. Using high resolution melting curve analysis and direct sequencing in both wgaDNA and gDNA samples, all coding regions and adjacent intron regions of the genes <it>SCN5A </it>and <it>KCNA5 </it>were investigated.</p> <p>Results</p> <p>Altered melting curves was present in 85 of wgaDNA samples and 81 of gDNA samples. Sequence analysis identified a total of 31 variants in the 10 wgaDNA samples. The same 31 variants were found in the exact same pattern of samples in the gDNA group. There was no false positive or negative sequence variation in the wgaDNA group.</p> <p>Conclusions</p> <p>The use of DNA amplified in triplicates from DBS samples is reliable and can be used both for high resolution curve melting analysis as well as direct sequence analysis. DBS samples therefore can serve as an alternative to whole blood in sequence analysis.</p

    Decreased serum cell-free DNA levels in rheumatoid arthritis

    Get PDF
    Purpose: Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. Methods: cfDNA was extracted from sera of patients with early and established RA, relapsing-remitting multiple sclerosis patients (RRMS) and healthy subjects, and its concentration was determined by quantitative PCR using two amplicons, Alu115 and β-actin205, corresponding to Alu repetitive elements and the β-actin single-copy gene, respectively. Serum DNase activity was measured by a single radial enzyme diffusion method. Results: Reduced levels of cfDNA were observed in patients with establi

    The Short-Term Effect of Weight Loss Surgery on Volumetric Breast Density and Fibroglandular Volume

    Get PDF
    Purpose: Obesity and breast density are both associated with an increased risk of breast cancer and are potentially modifiable. Weight loss surgery (WLS) causes a significant reduction in the amount of body fat and a decrease in breast cancer risk. The effect of WLS on breast density and its components has not been documented. Here, we analyze the impact of WLS on volumetric breast density (VBD) and on each of its components (fibroglandular volume and breast volume) by using three-dimensional methods. Materials and Methods: Fibroglandular volume, breast volume, and their ratio, the VBD, were calculated from mammograms before and after WLS by using Volpara™ automated software. Results: For the 80 women included, average body mass index decreased from 46.0 ± 7.22 to 33.7 ± 7.06 kg/m2. Mammograms were performed on average 11.6 ± 9.4 months before and 10.1 ± 7 months after WLS. There was a significant reduction in average breast volume (39.4 % decrease) and average fibroglandular volume (15.5 % decrease), and thus, the average VBD increased from 5.15 to 7.87 % (p < 1 × 10−9) after WLS. When stratified by menopausal status and diabetic status, VBD increased significantly in all groups but only perimenopausal and postmenopausal women and non-diabetics experienced a significant reduction in fibroglandular volume. Conclusions: Breast volume and fibroglandular volume decreased, and VBD increased following WLS, with the most significant change observed in postmenopausal women and non-diabetics. Further studies are warranted to determine how physical and biological alterations in breast density components after WLS may impact breast cancer risk.ECU Open Access Publishing Support Fun

    Acute-Phase Serum Amyloid A: An Inflammatory Adipokine and Potential Link between Obesity and Its Metabolic Complications

    Get PDF
    BACKGROUND: Obesity is associated with low-grade chronic inflammation, and serum markers of inflammation are independent risk factors for cardiovascular disease (CVD). However, the molecular and cellular mechanisms that link obesity to chronic inflammation and CVD are poorly understood. METHODS AND FINDINGS: Acute-phase serum amyloid A (A-SAA) mRNA levels, and A-SAA adipose secretion and serum levels were measured in obese and nonobese individuals, obese participants who underwent weight-loss, and persons treated with the insulin sensitizer rosiglitazone. Inflammation-eliciting activity of A-SAA was investigated in human adipose stromal vascular cells, coronary vascular endothelial cells and a murine monocyte cell line. We demonstrate that A-SAA was highly and selectively expressed in human adipocytes. Moreover, A-SAA mRNA levels and A-SAA secretion from adipose tissue were significantly correlated with body mass index ( r = 0.47; p = 0.028 and r = 0.80; p = 0.0002, respectively). Serum A-SAA levels decreased significantly after weight loss in obese participants ( p = 0.006), as well as in those treated with rosiglitazone ( p = 0.033). The magnitude of the improvement in insulin sensitivity after weight loss was significantly correlated with decreases in serum A-SAA ( r = −0.74; p = 0.034). SAA treatment of vascular endothelial cells and monocytes markedly increased the production of inflammatory cytokines, e.g., interleukin (IL)-6, IL-8, tumor necrosis factor alpha, and monocyte chemoattractant protein-1. In addition, SAA increased basal lipolysis in adipose tissue culture by 47%. CONCLUSIONS: A-SAA is a proinflammatory and lipolytic adipokine in humans. The increased expression of A-SAA by adipocytes in obesity suggests that it may play a critical role in local and systemic inflammation and free fatty acid production and could be a direct link between obesity and its comorbidities, such as insulin resistance and atherosclerosis. Accordingly, improvements in systemic inflammation and insulin resistance with weight loss and rosiglitazone therapy may in part be mediated by decreases in adipocyte A-SAA production

    High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Get PDF
    BACKGROUND:A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue.RESULTS:Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.CONCLUSION:MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
    corecore