1,239 research outputs found

    Simulation and theory of vibrational phase relaxation in the critical and supercritical nitrogen: Origin of observed anomalies

    Get PDF
    We present results of extensive computer simulations and theoretical analysis of vibrational phase relaxation of a nitrogen molecule along the critical isochore and also along the gas-liquid coexistence. The simulation includes all the different contributions [atom-atom (AA), vibration-rotation (VR) and resonant transfer] and their cross-correlations. Following Everitt and Skinner, we have included the vibrational coordinate (qq) dependence of the interatomic potential. It is found that the latter makes an important contribution. The principal important results are: (a) a crossover from a Lorentzian-type to a Gaussian line shape is observed as the critical point is approached along the isochore (from above), (b) the root mean square frequency fluctuation shows nonmonotonic dependence on the temperature along critical isochore, (c) along the coexistence line and the critical isochore the temperature dependent linewidth shows a divergence-like λ\lambda-shape behavior, and (d) the value of the critical exponents along the coexistence and along the isochore are obtained by fitting. The origin of the anomalous temperature dependence of linewidth can be traced to simultaneous occurrence of several factors, (i) the enhancement of negative cross-correlations between AA and VR contributions and (ii) the large density fluctuations as the critical point (CP) is approached. The former makes the decay faster so that local density fluctuations are probed on a femtosecond time scale. A mode coupling theory (MCT) analysis shows the slow decay of the enhanced density fluctuations near critical point. The MCT analysis demonstrates that the large enhancement of VR coupling near CP arises from the non-Gaussian behavior of density fluctuation and this enters through a nonzero value of the triplet direct correlation function.Comment: 35 pages, 15 figures, revtex4 (preprint form

    Millimeter and submillimeter wave technology developments for the next generation of fusion devices

    Get PDF
    There is increasing demand for compact watt-level coherent sources in the millimeter and submillimeter wave region. The approach that we have taken to satisfy this need is to fabricate two-dimensional grids loaded with oscillators, electronic beam steerers, and frequency multipliers for quasioptical coherent spatial combining of the outputs of a large number of low-power devices

    The spin vector of Venus determined from Magellan data

    Get PDF
    A control network of the north polar region of Venus has been established by selecting and measuring control points on full-resolution radar strips. The measurements were incorporated into a least-squares adjustment program that improved initial estimates of the coordinates of the control points, pole direction, and rotation rate of Venus. The current dataset contains 4206 measurements of 606 points on 619 radar strips. The accuracy of the determination is driven by spacecraft ephemeris errors. An accurate estimate of the rotation period of Venus was obtained by applying an ephemeris improvement technique. The second cycle closure orbits improved ephemeris solutions for 40 orbits (376-384, 520-528, 588-592, 658-668, 1002-1010, 1408-1412, 1746-1764, and 2166-2170) are included and fixed in the geodetic control computations, thus trying the network to the J2000 coordinate system

    Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium

    Full text link
    New inelastic X-ray scattering experiments have been performed on liquid lithium in a wide wavevector range. With respect to the previous measurements, the instrumental resolution, improved up to 1.5 meV, allows to accurately investigate the dynamical processes determining the observed shape of the the dynamic structure factor, S(Q,ω)S(Q,\omega). A detailed analysis of the lineshapes shows the co-existence of relaxation processes with both a slow and a fast characteristic timescales, and therefore that pictures of the relaxation mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure

    The Nebraska Tractor Law and Rules for Official Tractor Tests

    Get PDF
    The Nebraska Tractor Law, which became effective July 15, 1919, was enacted to encourage the manufacture and sale of improved types of tractors and to contribute to a more successful use of the tractor for farming. It was thought that the best method of accomplishing these objects would be to require a tractor of each model sold in the State to be tested at the State University and to have the results of these tests made public

    The NR4A subgroup: immediate early response genes with pleiotropic physiological roles

    Get PDF
    The nuclear hormone receptor (NR) superfamily includes the orphan NR4A subgroup, comprised of Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3). These NRs are classified as early response genes, are induced by a diverse range of signals, including fatty acids, stress, growth factors, cytokines, peptide hormones, phorbol esters, neurotransmitters, and physical stimuli (for example magnetic fields, shear stress). The ability to sense and rapidly respond to changes in the cellular environment thus appears to be a hallmark of this subfamily. The members of the NR4A subgroup are well conserved in the DNA binding domain (~91-95%) and the C-terminal ligand-binding domain (~60%), but are divergent in the N-terminal AB region. These receptors bind as monomers, homodimers and heterodimers with RXRs (to mediate retinoid signaling) to different permutations of the canonical NR binding motif. The NR4A subgroup activates gene expression in a constitutive ligand-independent manner. NR4A-mediated trans-activation (LBD) involves unusually active N-terminal AF-1 domains that mediate coactivator recruitment. Moreover, the NR4A receptors encode atypical LBDs and AF-2 domains. For example, the LBDs contain no cavity due to bulky hydrophobic residue side chains, and lack the classical coactivator-binding cleft constituted by helices 3, 4 and 12. However, a hydrophobic patch exists between helices 11 and 12, that encodes a novel cofactor interface that modulates transcriptional activity. In line with the pleiotropic physiological stimuli that induce the NR4A subgroup, these orphan NRs have been implicated in cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, carcinogenesis and atherogenesis

    Evidence of short time dynamical correlations in simple liquids

    Full text link
    We report a molecular dynamics (MD) study of the collective dynamics of a simple monatomic liquid -interacting through a two body potential that mimics that of lithium- across the liquid-glass transition. In the glassy phase we find evidences of a fast relaxation process similar to that recently found in Lennard-Jones glasses. The origin of this process is ascribed to the topological disorder, i.e. to the dephasing of the different momentum QQ Fourier components of the actual normal modes of vibration of the disordered structure. More important, we find that the fast relaxation persists in the liquid phase with almost no temperature dependence of its characteristic parameters (strength and relaxation time). We conclude, therefore, that in the liquid phase well above the melting point, at variance with the usual assumption of {\it un-correlated} binary collisions, the short time particles motion is strongly {\it correlated} and can be described via a normal mode expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.

    Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

    Get PDF
    Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (<i>GF</i>, i.e. the relative change in particle diameter from dry diameter, <i>D</i><sub>0</sub>, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The <i>GF</i> values at 85% RH (<i>D</i><sub>0</sub>=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal <i>GF</i> distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. <br><br> Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the <i>GF</i> measurements. This made it possible to estimate the apparent ensemble mean <i>GF</i> of the organics (<i>GF</i><sub>org</sub>) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. <i>GF</i><sub>org</sub> was found to be ~1.20 at <i>a</i><sub>w</sub>=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol

    Cloud condensation nuclei closure study on summer arctic aerosol

    Get PDF
    We present an aerosol – cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker <i>Oden</i>. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker <i>Oden</i> was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. <br><br> CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. <br><br> For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble (κ<sub>org</sub>=0.02), leading to a mean total κ, κ<sub>tot</sub>, of 0.33 ± 0.13. However, several settings led to closure and κ<sub>org</sub>=0.2 is found to be an upper limit at 0.1% supersaturation. κ<sub>org</sub>≤0.2 leads to a κ<sub>tot</sub> range of 0.33 ± 013 to 0.50 ± 0.11. Thus, the organic material ranges from being sparingly soluble to effectively insoluble. These results suggest that an increase in organic mass fraction in particles of a certain size would lead to a suppression of the Arctic CCN activity
    corecore