We report a molecular dynamics (MD) study of the collective dynamics of a
simple monatomic liquid -interacting through a two body potential that mimics
that of lithium- across the liquid-glass transition. In the glassy phase we
find evidences of a fast relaxation process similar to that recently found in
Lennard-Jones glasses. The origin of this process is ascribed to the
topological disorder, i.e. to the dephasing of the different momentum Q
Fourier components of the actual normal modes of vibration of the disordered
structure. More important, we find that the fast relaxation persists in the
liquid phase with almost no temperature dependence of its characteristic
parameters (strength and relaxation time). We conclude, therefore, that in the
liquid phase well above the melting point, at variance with the usual
assumption of {\it un-correlated} binary collisions, the short time particles
motion is strongly {\it correlated} and can be described via a normal mode
expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.