9 research outputs found

    The Sloan Digital Sky Survey Reverberation Mapping project : photometric g and i light curves

    Get PDF
    Funding: P.H. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number 2017-05983. C.J.G., W.N.B., and D.P.S. acknowledge support from NSF grant AST-1517113. Y.S. acknowledges support from an Alfred P. Sloan Research Fellowship and NSF grant AST-1715579. L.C.H. acknowledges the National Key R&D Program of China (2016YFA0400702) and the National Science Foundation of China (11721303, 11991052). J.V.H.S. and K.H. acknowledge support from a STFC grant ST/R000824/1. C.S.K. is supported by NSF grants AST-1814440 and AST-1908570.The Sloan Digital Sky Survey (SDSS) Reverberation Mapping program monitors 849 active galactic nuclei (AGNs) both spectroscopically and photometrically. The photometric observations used in this work span over 4 yr and provide an excellent baseline for variability studies of these objects. We present the photometric light curves from 2014 to 2017 obtained by the Steward Observatory's Bok telescope and the Canada-France-Hawaii telescope with MegaCam. We provide details on the data acquisition and processing of the data from each telescope, the difference imaging photometry used to produce the light curves, and the calculation of a variability index to quantify each AGN's variability. We find that the Welch-Stetson J index provides a useful characterization of AGN variability and can be used to select AGNs for further study.PostprintPeer reviewe

    The Sloan Digital Sky Survey Reverberation Mapping Project: Initial C IV lag results from four years of data

    Get PDF
    K.H. acknowledges support from STFC grant ST/M001296/1.We present reverberation-mapping (RM) lags and black hole mass measurements using the C iv λ1549 broad emission line from a sample of 348 quasars monitored as a part of the Sloan Digital Sky Survey RM Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days, allowing us to measure lags up to ~750 days in the observed frame (this corresponds to a rest-frame lag of ~300 days in a quasar at z = 1.5 and ~190 days at z = 3). We report significant time delays between the continuum and the C iv λ1549 emission line in 48 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of ~100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black hole masses and fit an updated C iv radius–luminosity relationship. Our results significantly increase the sample of quasars with C iv RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the C iv radius–luminosity relation. In addition, these quasars are located at some of the highest redshifts (z ≈ 1.4–2.8) of quasars with black hole masses measured with RM. This work constitutes the first large sample of C iv RM measurements in more than a dozen quasars, demonstrating the utility of multiobject RM campaigns.Publisher PDFPeer reviewe

    The Sloan Digital Sky Survey Reverberation Mapping Project : improving lag detection with an extended multiyear baseline

    Get PDF
    We investigate the effects of extended multiyear light curves (9 yr photometry and 5 yr spectroscopy) on the detection of time lags between the continuum variability and broad-line response of quasars at z ≳ 1.5, and compare with the results using 4 yr photometry+spectroscopy presented in a companion paper. We demonstrate the benefits of the extended light curves in three cases: (1) lags that are too long to be detected by the shorter-duration data but can be detected with the extended data; (2) lags that are recovered by the extended light curves but are missed in the shorter-duration data due to insufficient light-curve quality; and (3) lags for different broad-line species in the same object. These examples demonstrate the importance of long-term monitoring for reverberation mapping to detect lags for luminous quasars at high redshift, and the expected performance of the final data set from the Sloan Digital Sky Survey Reverberation Mapping project that will have 11 yr photometric and 7 yr spectroscopic baselines.Publisher PDFPeer reviewe

    The Sloan Digital Sky Survey Reverberation Mapping Project: Initial C iv Lag Results from Four Years of Data

    No full text

    GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era

    No full text
    corecore