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Abstract

We investigate the effects of extended multiyear light curves (9 yr photometry and 5 yr spectroscopy) on the
detection of time lags between the continuum variability and broad-line response of quasars at z1.5, and
compare with the results using 4 yr photometry+spectroscopy presented in a companion paper. We demonstrate
the benefits of the extended light curves in three cases: (1) lags that are too long to be detected by the shorter-
duration data but can be detected with the extended data; (2) lags that are recovered by the extended light curves
but are missed in the shorter-duration data due to insufficient light-curve quality; and (3) lags for different broad-
line species in the same object. These examples demonstrate the importance of long-term monitoring for
reverberation mapping to detect lags for luminous quasars at high redshift, and the expected performance of the
final data set from the Sloan Digital Sky Survey Reverberation Mapping project that will have 11 yr photometric
and 7 yr spectroscopic baselines.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Quasars (1319); Supermassive black holes
(1663); Reverberation mapping (2019); Surveys (1671)

1. Introduction

Reverberation mapping (RM; e.g., Blandford &
McKee 1982; Peterson 2014) is a technique to measure the
time delay between the continuum variability and the response
of the broad emission lines powered by the continuum in

efficiently accreting supermassive black holes (referred to as
“quasars” throughout this Letter). This time delay reflects the
light travel time from the innermost region around the black
hole to the broad-line region (BLR) and hence measures a
characteristic size for the BLR. Combined with the virial
velocity of the BLR inferred from the width of the broad
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emission lines, RM is used as the primary method to estimate
the black hole masses of distant quasars (Peterson 2014).

Traditionally, RM programs require dedicated imaging and
spectroscopic resources, usually obtained from small telescopes
with guaranteed access, to monitor individual objects over an
extended period of time (typically several months) where the
variability and the lag can be temporally resolved. Because of
the required heavy commitment of monitoring resources and
the serial mode of observing, past RM work has been mostly
limited to the low-z and low-luminosity regime of quasars,
targeting the most variable nearby systems for which RM is
most likely to succeed (e.g., Kaspi et al. 2000; Peterson et al.
2004; Barth et al. 2015; Du et al. 2016), with a few exceptions
for high-redshift and high-luminosity quasars (e.g., Kaspi et al.
2007; Trevese et al. 2014; Lira et al. 2018; Czerny et al. 2019).
To expand the RM sample to a broader parameter space of
quasars including the high-z and high-luminosity regime, the
most efficient approach is to monitor a significant number of
quasars simultaneously with wide-field imaging and multi-
object spectroscopy.

The Sloan Digital Sky Survey Reverberation Mapping
(SDSS-RM) project is a dedicated multiobject optical rever-
beration mapping program (Shen et al. 2015) that has been
monitoring a single 7 deg2 field since 2014, using the SDSS
Baryon Oscillation Spectroscopic Survey (BOSS; Eisenstein
et al. 2011; Dawson et al. 2013) spectrographs (Smee et al.
2013) on the 2.5 m SDSS telescope (Gunn et al. 2006) at
Apache Point Observatory. Accompanying photometric data in
the g and i bands are acquired with the 3.6 m Canada–France–
Hawaii Telescope (CFHT) and the Steward Observatory 2.3 m
Bok telescope. By the end of SDSS-RM in 2020, the
spectroscopic baseline will span 7 yr, with cadences ranging
from 4 to 5 days in the first season to monthly in the last few
seasons (2018–2020); the photometric baseline will span 11 yr
when including the 2010–2013 photometric light curves from
the Pan-STARRS 1 (PS1; Kaiser et al. 2010) Medium Deep
survey that covers the entire SDSS-RM field. The SDSS-RM
sample includes 849 quasars with iSDSS<21.7 and
0.1<z<4.5 without any constraints on quasar properties
(for detailed sample properties, see Shen et al. 2019). The main
purpose of SDSS-RM is to measure RM lags of different broad
lines covered by optical spectroscopy across the full range of
quasar luminosities and redshifts probed by the sample.

SDSS-RM has successfully measured short (<6 month) lags
for the low-ionization broad lines (e.g., Hα, Hβ, and Mg II;
Shen et al. 2016; Grier et al. 2017) based on the 2014 data. In a
companion paper (Grier et al. 2019, hereafter Paper I), we
reported the first results on C IV lags using four years
(2014–2018) of imaging and spectroscopy from SDSS-RM
(and for Mg II lags in Y. Homayouni et al. 2019, in
preparation), where the lags are typically longer than one
season in the observed frame. In this work, we investigate the
benefits of extending the baseline for the detection of lags.
Because the calibration and preparation of multiyear light
curves for lag measurements is computationally demanding
(see Section 2), we highlight only a handful of selected objects
to demonstrate the power of extended baselines. A complete
investigation of long lags for the full SDSS-RM sample will be
reported in future work. We describe the extended light-curve
data used in Section 2, present the lag measurements in
Section 3, and discuss our results and conclude in Section 4.
Luminosities are calculated assuming a flat ΛCDM cosmology

with parameters ΩΛ=0.7, Ωm=0.3, and H0=70 km s−1

Mpc−1.

2. Data

The SDSS-RM monitoring data include the multiepoch
spectroscopy taken by the BOSS spectrographs, as well as
photometric light curves from the CFHT and Bok telescopes.
The spectroscopic data are first reprocessed with a custom
pipeline to improve flux calibration (Shen et al. 2015),
followed by another recalibration process called PrepSpec to
further enhance spectrophotometric accuracy using the flux of
the narrow emission lines (e.g., Shen et al. 2016; Grier et al.
2017). PrepSpec also produces the broad-line light curves and
the rms spectra computed from the multiepoch spectroscopy,
which are used in subsequent analysis.
The photometric data from Bok and CFHT are combined

with the synthetic g and i photometry computed from SDSS
spectroscopy. The light-curve merging is performed using the
Continuum REprocessing AGN MCMC (CREAM) software
developed by Starkey et al. (2016) to produce the continuum
light curves for the lag measurements. During the CREAM
merging process, all data sets in both (g and i) filters are scaled
to a common flux scale of the g-band synthetic photometry
computed from SDSS spectra, and the uncertainties of the flux
measurements for both the continuum and broad-line light
curves are adjusted automatically to account for possible
underestimation of the flux errors. CREAM typically increases
the flux uncertainties by a fraction of less than 50%, indicating
that the original uncertainties are usually reasonable, but we
prefer the more conservative flux uncertainties reported by
CREAM. More technical details of the CREAM procedure can be
found in Paper I. The PS1 data are not combined using CREAM
with the rest of the light curve because of the lack of overlap in
time coverage, and are simply converted to flux density at the
effective wavelength of the g band. There is no noticeable
offset in the g-band light curve between the PS1 and CREAM-
merged data sets based on standard stars. We use the combined
9 yr g-band data as our fiducial continuum light curve to
measure the light-curve statistics and broad-line lags.
Paper I analyzed the 4 yr data set for a sample of 349 quasars

with C IV coverage (1.35<z<4.32) and significant line
variability detected by PrepSpec. We are in the process of
merging light curves with the latest compilation of data
(including additional years of spectroscopy and photometry),
and the CREAM step is the most computationally demanding
step in the process. We thus focus this study on a handful of
cases of particular interest for which we have prioritized the
light-curve processing, using 5 yr of spectroscopy (2014–2018)
and 9 yr of photometry (2010–2018). The leading photometric
light curves from PS1 that do not have accompanying
spectroscopy effectively extend the baseline to 9 yr. This work
uses the PS1 data presented by Shen et al. (2019) for the lag
analysis.

3. Lag Measurements

With the CREAM-merged light curves, we follow the
procedure outlined in Paper I to measure the lag between the
continuum and the broad-line light curves. We have performed
a systematic comparison (Li et al. 2019) of the performance of
several commonly adopted methods to measure the lag,
including the interpolated cross-correlation function (ICCF;
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Gaskell & Peterson 1987), z-transformed discrete correlation
function (Alexander 2013), and JAVELIN (Zu et al. 2011). For
data with quality similar to SDSS-RM data, JAVELIN
provides the best performance in terms of lag recovery and
the fidelity of the lag uncertainties. We therefore adopt the lags
measured by JAVELIN as our fiducial lags. However, ICCF
has been the standard technique to measure RM lags in the
literature, so we also present results from the ICCF approach to
validate the reported lags.

We are particularly interested in cases where the extended
monitoring data improve the lag detection over the 4 yr data
used in Paper I. More data points and an extended baseline
enhances the correlation between the light curves, mitigates

aliases from insufficient sampling, and allows us to measure
lags that are too long to be detectable by the shorter-duration
RM data. We present here results for three sources selected
from the 349 quasars in Paper I to demonstrate the power of the
extended light curves. These were chosen from a handful of
objects with well-behaved 4 yr light curves for which we
compiled the extended light curves and search for lags. We
imposed no additional criteria on these measurements for
selection—for example, we did not require that the lags are
consistent with the expectation from the preliminary C IV
R−L relation in Paper I.
The continuum and emission-line light curves for these

examples are shown in Figure 1; we discuss these individual

Figure 1. The 9 yr g-band continuum light curve (black) and 5 yr line light curve (red) for different objects and lines, where the latter has been shifted by the
corresponding JAVELIN lag (see the summary in Table 1), indicated by the red arrow in each panel. The light curves are normalized using the median flux over the
period to reflect fractional changes. All available epochs (including multiple data points on the same night) are plotted.
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cases in the following subsections. In all cases, the variability
of the lines is well detected, and we show the mean and rms
spectra of these examples in Figure 2. The RM measurements
are summarized in Table 1.

3.1. RM 363: Detecting Longer C IV Lags

The range of lag sensitivity of a campaign is limited by the
baseline of the campaign; the delayed broad-line light curve
must still have substantial overlap with the leading continuum
light curve in order to cross-correlate the two light curves. The
data examined in Paper I span only 4 yr; Paper I was thus
limited to lags shorter than about 700 days in the observed
frame.

Here, with the 9 yr effective baseline, we extend our lag
search to 1800 days (roughly 60% of the baseline), suitable for
detecting longer lags in the more luminous and higher-redshift
subset of the SDSS-RM sample.
Figure 3 (top) presents such an example: we measure a C IV

lag in RM 363, one of the most luminous quasars in the SDSS-
RM sample, having a bolometric luminosity of~ -10 erg s47 1 at
z=2.635. The measured C IV lag is more than 1000 days in
the observed frame due to the 1+z time dilation. This
example demonstrates the necessity of long-term monitoring
for the detection of multiyear lags. In addition, the typical
variability amplitude of this high-redshift quasar is only ∼10%

Figure 2. Mean and rms spectra for the three objects in this work. The top row is for RM 363 and RM 372 (for C IV lag), and the bottom row is for RM 651 (for three
lines). For each object, the top and bottom panels show the mean and rms spectra. The left panels show a large portion of the observed spectrum, and the right panels
show only the emission-line region. Vertical dotted black lines indicate the rest-frame wavelength of the broad emission line.

Table 1
Summary of RM Measurements

RMID SDSS Name z ( Å)l lLlog 1350 line JAVELINt τCCCD σrms VP M BH
b

hhmmss.ss±ddmmss.s ( )-erg s 1 (days) (days) (km s−1) (108 Me) (108 Me)

363 142113.30+524929.9 2.635 46.50 C IV -
+1113 178

107
-
+1092 44

62 2230±40 -
+3.0 0.5

0.3
-
+13.4 2.2

1.3

372 141236.48+540152.1 1.745 45.62 C IV -
+207 31

33
-
+184 56

56 4438±21 -
+2.9 0.4

0.5
-
+13.0 1.8

2.2

651 142149.30+521427.8 1.486 45.42a C IV -
+125 19

52
-
+228 58

140 2714±22 -
+0.72 0.11

0.30
-
+3.2 0.5

1.3

C III] -
+180 70

26
-
+180 38

30 2645±25 -
+0.99 0.39

0.14
-
+4.4 1.7

0.6

Mg II -
+258 80

19
-
+249 50

103 2586±29 -
+1.35 0.42

0.10
-
+6.0 1.9

0.4

Notes. The lags are reported in the observed frame. The penultimate column lists the virial product [ ( )]s tº +c G zVP 1rms
2

JAVELIN , where σrms is the line dispersion
measured from the line-only rms spectrum based on the 5 yr spectroscopy.
a The rest-frame 1350 Å is not covered in the spectrum of RM 651, and we compute ( Å)l lLlog 1350 from the 1700 Å monochromatic luminosity assuming a typical
power-law continuum of fλ∝λ−1.5.
b BH mass MBH was computed from the virial product (VP) using an average virial coefficient f=4.47 (using σrms) as measured by Woo et al. (2015), and we only
include measurement uncertainties propagated from the VP.
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(see Figure 1), indicating that high-S/N ratio spectroscopy is
required to detect the line variability.

We calculate a virial product
( )

º s t
+

VP c

G z1
rms
2

JAVELIN , where σrms is
the line dispersion (second moment) measured from the line-
only rms spectrum based on the 5 yr spectroscopy. This VP is
converted to a BH mass (MBH) as MBH=f×VP, where we
adopt an average virial coefficient f=4.47 as measured by
Woo et al. (2015). We only report measurement uncertainties in
MBH from the propagated uncertainties in VP and ignore the
systematic uncertainties in f for individual objects (see
discussions in, e.g., Shen 2013). For RM 363 we measure a
C IV-based RM BH mass of ´-

+ M13.4 102.2
1.3 8 .

3.2. RM 372: Mitigating for Aliases

Figure 3 (bottom) presents our RM analysis for RM 372 at
z=1.745. This source was analyzed in Paper I with the 4 yr
light curves, and a C IV lag was not robustly detected due to
insufficient light-curve quality. With the addition of the fifth
year of spectroscopy and the 4 yr of PS1 monitoring, we were
able to recover an observed-frame lag of ∼200 days. We
measure a C IV-based RM BH mass of ´-

+ M13.0 101.8
2.2 8 .

The C IV line light curve is shifted by about 6 months from
the continuum light curve, resulting in little overlap in the two
light curves. The light curves have smooth variations over
multiyear timescales, and the correlations between the

Figure 3. Lag measurements based on the 9 yr continuum light curve and 5 yr line light curve for RM 363 and RM 372. For each object, the left two panels show the
nightly averaged light curves for the continuum and the emission line, respectively. The nightly binned data are for plotting purposes only, and the lag measurements
are performed with all data points. The blue line and the shaded area are the best-fit JAVELIN continuum model light curve and 1σ uncertainties. The right three
panels present the ICCF, the distribution of the CCF centroid (CCCD) from Monte Carlo resampling of the light curves, and the posterior distribution of lags from the
JAVELIN analysis. In the JAVELIN panel (lower right), the light blue shaded area is the region used to compute the lag and uncertainties, following the alias-
mitigation approach described in detail in Paper I (also see Grier et al. 2017). The dashed and dotted lines indicate the lag (measured from the median of the
distribution within the shaded area) and its 1σ uncertainties. For RM 363, the inclusion of the earlier photometry from PS1 prior to 2014 and the fifth year of the
spectroscopic light curve are critical to this measurement. For RM 372, we were able to measure a robust C IV lag, while the JAVELIN analysis in Paper I based on
4 yr of photometry and spectroscopy (shown in red in the JAVELIN panel) has an alias peak around 500 days and a lower significance for the correct lag.
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continuum and line light curves are strongly suppressed on
timescales longer and shorter than ∼6 months, allowing a time
lag of about the length of the seasonal gap to be robustly
detected. This example demonstrates the power of extended-
baseline light curves in distinguishing between alias lags and

true lags, and shows that when certain conditions are met, we
are able to measure lags that are usually difficult to measure
when there are regular seasonal gaps. However, if the
variations dominating the correlation in the light curves are
on timescales shorter than ∼1 yr, the seasonal gaps will likely
lead to unreliable lag detection or even no detection (e.g., Grier
et al. 2008).

3.3. RM 651: Lags from Multiple Lines

Given the broad spectral coverage of SDSS, we will be able
to measure lags from several broad lines in a single object, and
explore the stratification of the BLR (e.g., Peterson &
Wandel 1999). Figure 4 presents the analysis for RM 651 at
z=1.486, where lags are successfully detected for three
different lines: C IV, C III], and Mg II. For C III], PrepSpec
measures the line flux from the complex of C III], Al III, and
Si III], where C III] dominates the flux. For this particular
object, there is some evidence from the JAVELIN analysis that
the C IV lag<C III] lag<Mg II lag, which is suggestive of
BLR stratification. However, the lag uncertainties are large, and
the line widths measured from the rms spectrum do not differ
significantly for these three lines (see Table 1). Therefore, we
cannot confirm BLR stratification for this example. The
calculated RM BH masses are ´-

+ M3.2 100.5
1.3 8 ,

´-
+ M4.4 101.7

0.6 8 , and ´-
+ M6.0 101.9

0.4 8 for C IV, C III], and
Mg II, respectively.
The Mg II variability amplitude in this object is substantially

lower than that of the continuum and the other two lines (see
Figure 1). This behavior is generally consistent with the lower
variability of Mg II compared to other major broad emission
lines (e.g., Sun et al. 2015), and also expectations from

Figure 4. Same as Figure 3, but for RM 651 and for three broad lines, C IV, C III], and Mg II. We successfully recovered lags in all three broad lines. The C III] line
flux includes contributions from the Si III] and Al III lines.

Figure 5. Locations of the measured rest-frame lags for our example cases in
the R−L plane. For RM 651, the luminosity positions have been slightly
shifted for different lines for clarity. The dashed line is the best-fit result in
Paper I for C IV lags. The measured lags are all consistent with this relation.
There is a hint that the C IV (Mg II) lag is the shortest (longest) among the three
lines, but the uncertainties are too large to confirm this trend.
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photoionization models (e.g., Goad et al. 1993; Guo et al.
2019).

4. Discussion and Conclusions

Using a 9 yr photometric baseline and 5 yr spectroscopic
baseline, we have presented several examples of lag detections
in high-redshift (z1.5) quasars from the SDSS-RM project.
We highlighted three objects: (1) a luminous quasar with an
observed-frame C IV lag of more than 1000 days; (2) a quasar
with a lag that falls within the seasonal gap of the light curves
that was recovered by the extended light curves but missed in
the earlier analysis based on 4 yr light curves (Paper I); and (3)
a quasar with well-detected lags for three broad lines (C IV,
C III], and Mg II).

Figure 5 displays the locations of our measured lags
(converted to the quasar rest-frame) in the radius–luminosity
(R− L) plane. These lags are consistent with the best-fit R−L
relation32 for C IV based on the full sample in Paper I.
However, we caution that the R−L relation for C IV is still
poorly constrained at the moment, a situation that can only be
improved by obtaining more C IV lag measurements over a
large dynamic range in quasar luminosity (e.g., Lira et al. 2018;
Hoormann et al. 2019, Paper I).

This work demonstrates the benefits, and sometimes the
necessity, of having long baselines of multiseason RM data to
detect long lags robustly in high-redshift and high-luminosity
quasars. Our preliminary analysis for a small number of objects
provides a glimpse of the expected lags from the final data set
of SDSS-RM, which will include two more years of
photometric and spectroscopic monitoring. With the final
extended data set, we expect to detect lags in the most
luminous quasars in the SDSS-RM sample, thus further
expanding the dynamic range in luminosity to constrain the
R−L relation for C IV. These results also demonstrate that lag
measurements for multiple lines in the same object are possible
with SDSS-RM data for high-redshift quasars, and hint at their
possible utility in evaluating BLR stratification models.

Our results here (and in Paper I) provide a strong
endorsement of current and future multiplexing spectroscopic
RM programs, such as the Black Hole Mapper program in
SDSS-V (Kollmeier et al. 2017), the OzDES RM program
(King et al. 2015), the 4MOST RM program (Swann et al.
2019), and the Maunakea Spectroscopic Explorer RM program
(The MSE Science Team et al. 2019).
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