294 research outputs found

    Mechanical modes of 'amoeboid' cell migration

    Get PDF
    The morphological term 'amoeboid' migration subsumes a number of rather distinct biophysical modes of cellular locomotion that range from blebbing motility to entirely actin-polymerization-based gliding. Here, we discuss the diverse principles of force generation and force transduction that lead to the distinct amoeboid phenotypes. We argue that shifting the balance between actin protrusion, actomyosin contraction, and adhesion to the extracellular substrate can explain the different modes of amoeboid movement and that blebbing and gliding are barely extreme variants of one common migration strategy. Depending on the cell type, physiological conditions or experimental manipulation, amoeboid cells can adopt the distinct mechanical modes of amoeboid migration

    β1 integrins: zip codes and signaling relay for blood cells

    Get PDF
    At least eight of the twelve known members of the β1 integrin family are expressed on hematopoietic cells. Among these, the VCAM-1 receptor α4β1 has received most attention as a main factor mediating firm adhesion to the endothelium during blood cell extravasation. Therapeutic trials are ongoing into the use of antibodies and small molecule inhibitors to target this interaction and hence obtain anti-inflammatory effects. However, extravasation is only one possible process that is mediated by β1 integrins and there is evidence that they also mediate leukocyte retention and positioning in the tissue, lymphocyte activation and possibly migration within the interstitium. Genetic mouse models where integrins are selectively deleted on blood cells have been used to investigate these functions and further studies will be invaluable to critically evaluate therapeutic trials

    The extracellular matrix of the spleen as a potential organizer of immune cell compartments

    Get PDF
    Until recently little information was available on the molecular details of the extracellular matrix (ECM) of secondary lymphoid tissues. There is now growing evidence that these ECMs are unique structures, combining characteristics of basement membranes and interstitial or fibrillar matrices, resulting in scaffolds that are strong and highly flexible and, in certain secondary lymphoid compartments, also forming conduit networks for rapid fluid transport. This review will address the structural characteristics of the ECM of the murine spleen and its potential role as an organizer of immune cell compartments, with reference to the lymph node where relevant

    Preparation of individual magnetic sub-levels of <sup>4</sup>He(2<sup>3</sup>S<sub>1</sub>) in a supersonic beam using laser optical pumping and magnetic hexapole focusing

    Get PDF
    We compare two different experimental techniques for the magnetic-sub-level preparation of metastable 4He in the 23S1 level in a supersonic beam, namely, magnetic hexapole focusing and optical pumping by laser radiation. At a beam velocity of v = 830 m/s, we deduce from a comparison with a particle trajectory simulation that up to 99% of the metastable atoms are in the MJ″ = +1 sub-level after magnetic hexapole focusing. Using laser optical pumping via the 23P2–23S1 transition, we achieve a maximum efficiency of 94% ± 3% for the population of the MJ″ = +1 sub-level. For the first time, we show that laser optical pumping via the 23P1–23S1 transition can be used to selectively populate each of the three MJ″ sub-levels (MJ″ = −1, 0, +1). We also find that laser optical pumping leads to higher absolute atom numbers in specific MJ″ sub-levels than magnetic hexapole focusing

    Rapid leukocyte migration by integrin-independent flowing and squeezing

    Get PDF
    All metazoan cells carry transmembrane receptors of the integrin family, which couple the contractile force of the actomyosin cytoskeleton to the extracellular environment. In agreement with this principle, rapidly migrating leukocytes use integrin-mediated adhesion when moving over two-dimensional surfaces. As migration on two-dimensional substrates naturally overemphasizes the role of adhesion, the contribution of integrins during three-dimensional movement of leukocytes within tissues has remained controversial. We studied the interplay between adhesive, contractile and protrusive forces during interstitial leukocyte chemotaxis in vivo and in vitro. We ablated all integrin heterodimers from murine leukocytes, and show here that functional integrins do not contribute to migration in three-dimensional environments. Instead, these cells migrate by the sole force of actin-network expansion, which promotes protrusive flowing of the leading edge. Myosin II-dependent contraction is only required on passage through narrow gaps, where a squeezing contraction of the trailing edge propels the rigid nucleus

    Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    Get PDF
    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space

    Modeling lymphocyte homing and encounters in lymph nodes

    Get PDF
    International audienceBackgroundThe efficiency of lymph nodes depends on tissue structure and organization, which allow the coordination of lymphocyte traffic. Despite their essential role, our understanding of lymph node specific mechanisms is still incomplete and currently a topic of intense research.ResultsIn this paper, we present a hybrid discrete/continuous model of the lymph node, accounting for differences in cell velocity and chemotactic response, influenced by the spatial compartmentalization of the lymph node and the regulation of cells migration, encounter, and antigen presentation during the inflammation process.ConclusionOur model reproduces the correct timing of an immune response, including the observed time delay between duplication of T helper cells and duplication of B cells in response to antigen exposure. Furthermore, we investigate the consequences of the absence of dendritic cells at different times during infection, and the dependence of system dynamics on the regulation of lymphocyte exit from lymph nodes. In both cases, the model predicts the emergence of an impaired immune response, i.e., the response is significantly reduced in magnitude. Dendritic cell removal is also shown to delay the response time with respect to normal conditions

    Ancestral Vascular Lumen Formation via Basal Cell Surfaces

    Get PDF
    The cardiovascular system of bilaterians developed from a common ancestor. However, no endothelial cells exist in invertebrates demonstrating that primitive cardiovascular tubes do not require this vertebrate-specific cell type in order to form. This raises the question of how cardiovascular tubes form in invertebrates? Here we discovered that in the invertebrate cephalochordate amphioxus, the basement membranes of endoderm and mesoderm line the lumen of the major vessels, namely aorta and heart. During amphioxus development a laminin-containing extracellular matrix (ECM) was found to fill the space between the basal cell surfaces of endoderm and mesoderm along their anterior-posterior (A-P) axes. Blood cells appear in this ECM-filled tubular space, coincident with the development of a vascular lumen. To get insight into the underlying cellular mechanism, we induced vessels in vitro with a cell polarity similar to the vessels of amphioxus. We show that basal cell surfaces can form a vascular lumen filled with ECM, and that phagocytotic blood cells can clear this luminal ECM to generate a patent vascular lumen. Therefore, our experiments suggest a mechanism of blood vessel formation via basal cell surfaces in amphioxus and possibly in other invertebrates that do not have any endothelial cells. In addition, a comparison between amphioxus and mouse shows that endothelial cells physically separate the basement membranes from the vascular lumen, suggesting that endothelial cells create cardiovascular tubes with a cell polarity of epithelial tubes in vertebrates and mammals
    corecore