54 research outputs found
Risk Scores for Patients with Chest Pain: Evaluation in the Emergency Department
Chest pain is a common reason for presentation to the emergency department (ED). Absolute criteria for Acute Coronary Syndrome without ST elevation (NSTE-ACS) are lacking. An acute coronary syndrome (ACS) needs to be distinguished from a variety of other cardiac and non-cardiac diseases that may cause chest pain
Quantifying the impact of microbes on soil structural development and behaviour in wet soils
There is evidence that microbial populations play an important role in altering soil pore geometry, but a full understanding of how this affects subsequent soil behaviour and function is still unclear. In particular the role of microorganisms in soil structural evolution and its consequence for pore morphological development is lacking. Using a combination of bio-chemical measurements and X-ray Computed Tomography (CT) imaging, a temporal comparison of microscale soil structural development in contrasting soil environments was made. The aim was to quantify the effect of microbial activity in the absence of other features likely to cause soil deformation (e.g. earthworms, roots etc.) on soil structural development in wet soils, defined by changes in the soil porous architecture i.e. pore connectivity, pore shape and pore volume during a 24 week period. Three contrasting soil textures were examined and changes compared between field soil, sterilised soil and a glucose enhanced soil treatment. Our results indicate that soil biota can significantly alter their microhabitat by changing soil pore geometry and connectivity, primarily through localised gaseous release. This demonstrates the ability of microorganisms to modify soil structure, and may help reveal the scope by which the microbial-rich rhizosphere can locally influence water and nutrient delivery to plant roots
Measurement of the Transverse-Longitudinal Cross Sections in the p (e,e'p)pi0 Reaction in the Delta Region
Accurate measurements of the p(e,e?p)pi0 reaction were performed at
Q^2=0.127(GeV/c)^2 in the Delta resonance energy region. The experiments at the
MIT-Bates Linear Accelerator used an 820 MeV polarized electron beam with the
out of plane magnetic spectrometer system (OOPS). In this paper we report the
first simultaneous determination of both the TL and TL? (``fifth" or polarized)
cross sections at low Q^{2} where the pion cloud contribution dominates the
quadrupole amplitudes (E2 and C2). The real and imaginary parts of the
transverse-longitudinal cross section provide both a sensitive determination of
the Coulomb quadrupole amplitude and a test of reaction calculations.
Comparisons with model calculations are presented. The empirical MAID
calculation gives the best overall agreement with this accurate data. The
parameters of this model for the values of the resonant multipoles are
|M_{1+}(I=3/2)|= (40.9 \pm 0.3)10^{-3}/m_pi, CMR= C2/M1= -6.5 \pm 0.3%,
EMR=E2/M1=-2.2 \pm 0.9%, where the errors are due to the experimental
uncertainties.Comment: 10 pages, 3 figures, minor corrections and addition
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
- …