195 research outputs found

    Cyanobacterial toxic and bioactive peptides in freshwater bodies of Greece: Concentrations, occurrence patterns, and implications for human health.

    Get PDF
    Cyanobacterial harmful algal blooms represent one of the most conspicuous waterborne microbial hazards in aquatic environments mostly due to the production of toxic secondary metabolites, mainly microcystins (MCs). Other bioactive peptides are frequently found in cyanobacterial blooms, yet their concentration and ecological relevance is still unknown. In this paper we studied the presence and concentration of cyanobacterial peptides (microcystins, anabaenopeptins, anabaenopeptilides) in 36 Greek freshwater bodies, using HPLC-DAD, ELISA, and PP1IA. Microcystins were found in more than 90% of the samples investigated, indicating that microcystin-producing strains seem to also occur in lakes without blooms. Microcystins MC-RR, MC-LR, and MC-YR were the main toxin constituents of the bloom samples. Anabaenopeptin A and B were predominant in some samples, whereas anabaenopeptolide 90A was the only peptide found in Lake Mikri Prespa. The intracellular concentrations of anabaenopeptins produced by cyanobacterial bloom populations are determined for the first time in this study; the high (>1000 µg·L−1) anabaenopeptin concentration found indicates there may be some impacts, at least on the ecology and the food web structure of the aquatic ecosystems. The maximum intracellular MC values measured in Lakes Kastoria and Pamvotis, exceeding 10,000 µg·L−1, are among the highest reported.Peer reviewe

    Phylogenomic Analysis of Secondary Metabolism in the Toxic Cyanobacterial Genera Anabaena, Dolichospermum and Aphanizomenon

    Get PDF
    Cyanobacteria produce an array of toxins that pose serious health risks to humans and animals. The closely related diazotrophic genera, Anabaena, Dolichospermum and Aphanizomenon, frequently form poisonous blooms in lakes and brackish waters around the world. These genera form a complex now termed the Anabaena, Dolichospermum and Aphanizomenon (ADA) clade and produce a greater array of toxins than any other cyanobacteria group. However, taxonomic confusion masks the distribution of toxin biosynthetic pathways in cyanobacteria. Here we obtained 11 new draft genomes to improve the understanding of toxin production in these genera. Comparison of secondary metabolite pathways in all available 31 genomes for these three genera suggests that the ability to produce microcystin, anatoxin-a, and saxitoxin is associated with specific subgroups. Each toxin gene cluster was concentrated or even limited to a certain subgroup within the ADA clade. Our results indicate that members of the ADA clade encode a variety of secondary metabolites following the phylogenetic clustering of constituent species. The newly sequenced members of the ADA clade show that phylogenetic separation of planktonic Dolichospermum and benthic Anabaena is not complete. This underscores the importance of taxonomic revision of Anabaena, Dolichospermum and Aphanizomenon genera to reflect current phylogenomic understanding

    Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Leptothoe

    Get PDF
    Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products

    Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Leptothoe

    Get PDF
    Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products

    Draft genome sequence of Calothrix 336/3, novel H2 producing cyanobacterium isolated from Finnish lake

    Get PDF
    We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications.Non peer reviewe

    Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production

    Get PDF
    The value and efficiency of microalgal biofuel production can be improved in an integrated system using waste streams as feed-stock, with fuel-rich biomass and treated wastewater being key end-products. We have evaluated seven native cyanobacterial isolates and one native green alga for their nutrient removal, biomass accumulation and lipid production capacities. All native isolates were successfully grown on synthetic wastewater mimicking secondary treated municipal wastewater (without organic carbon). Complete phosphate removal was achieved by the native green alga, isolated from Tvarminne (SW Finland). Optimisation of the C:N ratio available to this strain was achieved by addition of 3% CO2 and resulted in complete ammonium removal in synthetic wastewater. The native green alga demonstrated similar nutrient removal rates and even stronger growth in screened municipal wastewater, which had double the ammonium concentration of the synthetic media and also contained organic carbon. Sequencing of the genes coding for 18S small rRNA subunit and the ITS1 spacer region of this alga placed it in the Scenedesmaceae family. The lipid content of native isolates was evaluated using BODIPY (505/515) staining combined with high-throughput flow cytometry, where the native green alga demonstrated significantly greater neutral lipid accumulation than the cyanobacteria under the conditions studied. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe
    • …
    corecore