146 research outputs found

    Analysis of soil and vegetation patterns in semi-arid Mediterranean landscapes by way of a conceptual water balance model

    No full text
    International audienceThis paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. Water balance constraints are assumed to dominate the organization of landscapes and a conceptual bucket approach is adopted to model the temporal water balance dynamics, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of investigating the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found to be able to explain the observed affinity patterns. Finally, the existence of such preferential association between soil water holding capacity and vegetation species is verified through an extensive soil survey available in the study region

    Socio-hydrology: Use-inspired water sustainability science for the Anthropocene

    Get PDF
    Water is at the core of the most difficult sustainability challenges facing humans in the modern era, involving feedbacks across multiple scales, sectors, and agents. We suggest that a transformative new discipline is necessary to address many and varied water-related challenges in the Anthropocene. Specifically, we propose socio-hydrology as a use-inspired scientific discipline to focus on understanding, interpretation, and scenario development of the flows and stocks in the human-modified water cycle across time and space scales. A key aspect of socio-hydrology is explicit inclusion of two-way feedbacks between human and water systems, which differentiates socio-hydrology from other inter-disciplinary disciplines dealing with water. We illustrate the potential of socio-hydrology through three examples of water sustainability problems, defined as paradoxes, which can only be fully resolved within a new socio-hydrologic framework that encompasses such two-way coupling between human and water systems

    Advancing catchment hydrology to deal with predictions under change

    Get PDF
    Throughout its historical development, hydrology as an earth science, but especially as a problem-centred engineering discipline has largely relied (quite successfully) on the assumption of stationarity. This includes assuming time invariance of boundary conditions such as climate, system configurations such as land use, topography and morphology, and dynamics such as flow regimes and flood recurrence at different spatio-temporal aggregation scales. The justification for this assumption was often that when compared with the temporal, spatial, or topical extent of the questions posed to hydrology, such conditions could indeed be considered stationary, and therefore the neglect of certain long-term non-stationarities or feedback effects (even if they were known) would not introduce a large error. However, over time two closely related phenomena emerged that have increasingly reduced the general applicability of the stationarity concept: the first is the rapid and extensive global changes in many parts of the hydrological cycle, changing formerly stationary systems to transient ones. The second is that the questions posed to hydrology have become increasingly more complex, requiring the joint consideration of increasingly more (sub-) systems and their interactions across more and longer timescales, which limits the applicability of stationarity assumptions. Therefore, the applicability of hydrological concepts based on stationarity has diminished at the same rate as the complexity of the hydrological problems we are confronted with and the transient nature of the hydrological systems we are dealing with has increased. The aim of this paper is to present and discuss potentially helpful paradigms and theories that should be considered as we seek to better understand complex hydrological systems under change. For the sake of brevity we focus on catchment hydrology. We begin with a discussion of the general nature of explanation in hydrology and briefly review the history of catchment hydrology. We then propose and discuss several perspectives on catchments: as complex dynamical systems, self-organizing systems, co-evolving systems and open dissipative thermodynamic systems. We discuss the benefits of comparative hydrology and of taking an information-theoretic view of catchments, including the flow of information from data to models to predictions. In summary, we suggest that these perspectives deserve closer attention and that their synergistic combination can advance catchment hydrology to address questions of change

    ERS International Congress 2022: highlights from the Respiratory Clinical Care and Physiology Assembly

    Get PDF
    It is a challenge to keep abreast of all the clinical and scientific advances in the field of respiratory medicine. This article contains an overview of the laboratory-based science, clinical trials and qualitative research that were presented during the 2022 European Respiratory Society International Congress within the sessions from the five groups of Assembly 1 (Respiratory Clinical Care and Physiology). Selected presentations are summarised from a wide range of topics: clinical problems, rehabilitation and chronic care, general practice and primary care, mobile/electronic health (m-health/e-health), clinical respiratory physiology, exercise and functional imaging

    Incorporating the social dimension into hydrogeochemical investigations for rural development: the Bir Al-Nas approach for socio-hydrogeology

    Get PDF
    A replicable multidisciplinary approach is presented for science-based groundwater management practices: Bir Al-Nas (Bottom-up IntegRated Approach for sustainabLe grouNdwater mAnagement in rural areaS). This approach provides a practical example of the concept of “socio-hydrogeology”, a way of incorporating the social dimension into hydrogeological investigations, as reinforced by the translation of the Arabic bir al-nas: “the people’s well”. To achieve this, hydrogeologists act as “social hydrologists” during their monitoring activities, which often bring them into contact with local communities and end users (and polluters) of water. Not only can they retrieve reliable information about traditional know-how and local issues, but they can also change the public perception of science/scientists to create the basis for mutual collaboration and understanding in view of implementing improved integrated groundwater management. The final outcomes are expected to be an increased awareness of communities at the local level and a clear understanding of their water issues and needs from the very early stages of the investigation. Although the importance of using such methods in groundwater analysis and management is widely recognized, hydrogeological investigations are currently dominated by sectorial approaches that are easier to implement but less sustainable. The pressure of population growth, the shift towards more water-dependent economies, climate change and its impact on water availability will require scientists to use a more integrated approach, such as Bir Al-Nas, when dealing with increasing water pollution and water-scarcity issues.A replicable multidisciplinary approach is presented for science-based groundwater management practices: Bir Al-Nas (Bottom-up IntegRated Approach for sustainabLe grouNdwater mAnagement in rural areaS). This approach provides a practical example of the concept of "socio-hydrogeology", a way of incorporating the social dimension into hydrogeological investigations, as reinforced by the translation of the Arabic bir al-nas: "the people's well". To achieve this, hydrogeologists act as "social hydrologists" during their monitoring activities, which often bring them into contact with local communities and end users (and polluters) of water. Not only can they retrieve reliable information about traditional know-how and local issues, but they can also change the public perception of science/scientists to create the basis for mutual collaboration and understanding in view of implementing improved integrated groundwater management. The final outcomes are expected to be an increased awareness of communities at the local level and a clear understanding of their water issues and needs from the very early stages of the investigation. Although the importance of using such methods in groundwater analysis and management is widely recognized, hydrogeological investigations are currently dominated by sectorial approaches that are easier to implement but less sustainable. The pressure of population growth, the shift towards more water-dependent economies, climate change and its impact on water availability will require scientists to use a more integrated approach, such as Bir Al-Nas, when dealing with increasing water pollution and water-scarcity issues

    ERS statement: A core outcome set for clinical trials evaluating the management of COPD exacerbations

    Get PDF
    Clinical trials evaluating the management of acute exacerbations of COPD assess heterogeneous outcomes, often omitting those that are clinically relevant or more important to patients. We have developed a core outcome set, a consensus-based minimum set of important outcomes that we recommend are evaluated in all future clinical trials on exacerbations management, to improve their quality and comparability. COPD exacerbations outcomes were identified through methodological systematic reviews and qualitative interviews with 86 patients from 11 countries globally. The most critical outcomes were prioritised for inclusion in the core outcome set through a two-round Delphi survey completed by 1063 participants (256 patients, 488 health professionals and 319 clinical academics) from 88 countries in five continents. Two global, multi-stakeholder, virtual consensus meetings were conducted to 1) finalise the core outcome set and 2) prioritise a single measurement instrument to be used for evaluating each of the prioritised outcomes. Consensus was informed by rigorous methodological systematic reviews. The views of patients with COPD were accounted for at all stages of the project. Survival, treatment success, breathlessness, quality of life, activities of daily living, the need for a higher level of care, arterial blood gases, disease progression, future exacerbations and hospital admissions, treatment safety and adherence were all included in the core outcome set. Focused methodological research was recommended to further validate and optimise some of the selected measurement instruments. The panel did not consider the prioritised set of outcomes and associated measurement instruments to be burdensome for patients and health professionals to use

    European Respiratory Society International Congress, Barcelona, 2022: Highlights from the Respiratory clinical care and physiology assembly

    Get PDF
    It is a challenge to keep abreast of all the clinical and scientific advances in the field of respiratory medicine. This article contains an overview of laboratory-based science, clinical trials and qualitative research that were presented during the 2022 European Respiratory Society International Congress within the sessions from the five groups of the Assembly 1 – Respiratory clinical care and physiology. Selected presentations are summarised from a wide range of topics: clinical problems, rehabilitation and chronic care, general practice and primary care, electronic/mobile health (e-health/m-health), clinical respiratory physiology, exercise and functional imaging
    corecore