8 research outputs found

    The exploration of potato-associated bacteria in the Central Andean Highlands and their application in integrated crop management systems

    No full text
    Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings

    Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris

    No full text
    Defensins are small cysteine-rich endogenous host defense peptides expressed in all higher plants. They are thought to be important players in the defense arsenal of plants against fungal and oomycete pathogens. However, little is known regarding the antibacterial activity of these peptides. The genome of the model legume Medicago truncatula contains 63 genes each encoding a defensin with a tetradisulfide array. A unique bi-domain defensin, designated MtDef5, was recently characterized for its potent broad-spectrum antifungal activity. This 107-amino acid defensin contains two domains, 50 amino acids each, linked by a short peptide APKKVEP. Here, we characterize antibacterial activity of this defensin and its two domains, MtDef5A and MtDef5B, against two economically important plant bacterial pathogens, Gram-negative Xanthomonas campestris and Gram-positive Clavibacter michiganensis. MtDef5 inhibits the growth of X. campestris, but not C. michiganensis, at micromolar concentrations. MtDef5B, but not MtDef5A, exhibits more potent antibacterial activity than its parent MtDef5. MtDef5 and each of its two domains induce distinct morphological changes and cell death in X. campestris. They permeabilize the bacterial plasma membrane and translocate across membranes to the cytoplasm. They bind to negatively charged DNA indicating these peptides may kill bacterial cells by inhibiting DNA synthesis and/or transcription. The cationic amino acids present in the two Îł-core motifs of MtDef5 that were previously shown to be important for its antifungal activity are also important for its antibacterial activity. MtDef5 and its more potent single domain MtDef5B have the potential to be deployed as antibacterial agents for control of a Xanthomonas wilt disease in transgenic crops

    Impact of plant growth-promoting rhizobacteria on root colonization potential and life cycle of Rhizophagus irregularis following co-entrapment into alginate beads.

    Get PDF
    AIMS: This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria (PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-entrapped in alginate beads. METHODS AND RESULTS: Two in vitro experiments were conducted. The first consisted of the immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best performing PGPR from experiment 1 was tested for its ability to promote the symbiotic development of the AMF in potato plantlets from three cultivars. Results showed that only one isolate identified as Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of germinated spores during the pre-symbiotic phase of the fungus. This PGPR further promoted the symbiotic development of the AMF in potato plants. CONCLUSIONS: The co-entrapment of Ps. plecoglossicida R-67094 and R. irregularis MUCL 41833 in alginate beads improved root colonization by the AMF and its further life cycle under the experimental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Co-entrapment of suitable AMF-PGPR combinations within alginate beads may represent an innovative technology that can be fine-tuned for the development of efficient consortia-based bioformulations
    corecore