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Abstract  

Aims: This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria 

(PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-

entrapped in alginate beads. 

Methods and results: Two in vitro experiments were conducted. The first consisted in the 

immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of 

the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best-performing 

PGPR from experiment 1 was tested on its ability to promote the symbiotic development of the AMF 

in potato plantlets from three cultivars. Results showed that only one isolate identified as 

Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of 

germinated spores during pre-symbiotic phase of the fungus.  This PGPR further promoted the 

symbiotic development of the AMF in potato plants.  

Conclusions: The co-entrapment of P. plecoglossicida R-67094 and R. irregularis MUCL 41833 in 

alginate beads improved root colonization by the AMF and its further life cycle under the 

experimental conditions. 

Significance and impact of the study: Co-entrapement of suitable AMF-PGPR combinations within 

alginate beads may represent an innovative technology that can be fine-tuned for the development of 

efficient consortia-based bioformulations. 

Keywords: AMF, co-entrapment, alginate beads, formulation, interaction, microbial inoculant, 

PGPR, potato, Pseudomonas, Rhizophagus irregularis. 

Introduction 

Fertilizers and plant protection products are two major inputs for increasing agricultural production, 

but their excessive use can have negative environmental and financial consequences (Wilson and 

Tisdell 2001). Most crops including potato (Maynard and Hochmuth 2007) are relatively sensitive in 
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terms of yield under limited nutrient supply. One alternative to decrease the use of chemical inputs in 

agriculture is to harness soil microorganisms. Soils are natural reservoirs of beneficial 

microorganisms, which have a direct influence on soil fertility (Kennedy and Smith 1995). Certain 

microorganisms can improve plant growth via direct or indirect mechanisms (Velivelli et al. 2014a, 

2014b; Kumar 2016). Among them, arbuscular mycorrhizal fungi (AMF) and plant growth-promoting 

rhizobacteria (PGPR) have been extensively studied in the last decades. Promising results have been 

obtained with the co-inoculation of both organisms either under greenhouse (Budi et al. 1999; 

Gamalero et al. 2004) or field conditions (Adesemoye et al. 2008) suggesting the potential added-

value of consortia versus single formulations (Berg 2009, Bhardwaj et al. 2014).  

In the last decades, the market for microbial inoculants has noticeably increased (e.g. Berg 2009, 

Calvo et al. 2014). AMF and PGPR have been formulated using different techniques and applied in 

the field by spraying, coating seeds and/or entrapped within beads. In particular, entrapment 

technology has attracted much attention for its advantages over free cell formulations (Cassidy et al. 

1996). Alginate beads can protect microbes from biotic and abiotic stresses and improve persistence 

and physiological activity as well as cell densities (Schoebitz et al. 2013). Entrapment also allows an 

easy delivery of the microbial inoculants at the site where they are needed and can be used in seed 

drills commonly used by farmers (De Jaeger et al. 2011). Entrapment in alginate has been reported in 

numerous studies with single isolated microorganisms (e.g. AMF – Declerck et al. 1996 or PGPR – 

Bashan et al. 2002), whilst much fewer studies reported on consortia. For instance, De Jaeger et al. 

(2011) and more recently Buysens et al. (2016) co-entrapped the AMF R. irregularis MUCL 41833 

with the fungus Trichoderma harzianum MUCL 29707 into alginate beads for field trials, which 

resulted into increased potato yield (Buysens et al. 2016). Co-immobilization constitutes an 

unexploited biotechnology for microbial formulation (Vassilev et al. 2105) 

In vitro cultivation represents a powerful tool to assess microbe-microbe interactions in a non-

destructive way (De Jaeger et al. 2010). Although, even if it is naïve to extrapolate the obtained 

results to field conditions, data obtained in vitro could help us to unveil through direct observations 

the effects of PGPR on AMF within formulated alginate beads. In a previous experiment, Declerck et 
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al. (1996) demonstrated that entrapment in alginate beads did not decrease the colonization capacity 

(evaluated as percentage of Potentially Infective Beads - % PIB) of in vitro produced spores of 

Glomus versiforme. One germinated spore per bead was sufficient to consider the bead as potentially 

infective. More recently, De Jaeger et al. (2011) succeeded in the co-entrapment of Rhizophagus 

irregularis MUCL 41833 with Trichoderma harzianum. They demonstrated that the %PIB of the 

AMF was not affected by the presence of T. harzianum. However, to our knowledge, the effects of 

PGPR on AMF co-entrapped in alginate beads have never been explored so far. Early reports 

suggested that some rhizobacterial species could stimulate arbuscular mycorrhizal symbiosis (e.g. 

Toro et al. 1997; Vosátka and Gryndler 2000; Gamalero et al. 2004, Pivato et al. 2009). Production of 

cost-effective microbial bioformulations will require the development of innovative technologies to 

improve their efficiency and applicability (Bashan 2014; Vassilev et al. 2015). 

The aim of the present study was to evaluate the effect of seven PGPR isolates from potato 

plantations in Ecuador on the life cycle of Rhizophagus irregularis MUCL 41833 and on potato root 

colonization following co-entrapment into alginate beads. We selected potato as model plant because 

(1) it is the third most important food crop in the world after rice and wheat in terms of total 

production and human consumption (FAO 2015), (2) it is grown in various areas of EU and is central 

to the Andes, (3) it is usually cultivated under high-input systems to get acceptable yields (4) the 

PGPR tested were originally isolated from potato plantations in Ecuador. We hypothesized that 

certain PGPRs can promote the development of the AMF after co-encapsulation in alginate beads. 

2. Materials and Methods 

Biological material 

Plant growth-promoting rhizobacteria (PGPR) 

Four PGPR isolates namely Serratia sp. (R-67091), Pseudomonas plecoglossicida (R-67094), 

Pseudomonas granadensis (R-67095) and Pseudomonas extremaustralis (R-49457) were isolated in 

the frame of the VALORAM (Valorizing Andean microbial diversity through sustainable 
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intensification of potato-based farming systems) project; they are preliminary identified on the basis 

of 16S rRNA sequence analysis and by an in house MLSA data base. Three isolates: Bacillus 

amyloliquefaciens (LMG 24415) and Bacillus subtilis (LMG 24418 and LMG 24423) were obtained 

from the BCCM/LMG bacterial collection (http://bccm.belspo.be/about-us/bccm-lmg, Ghent, 

Belgium). The cultures were supplied in Petri plates (90 mm diam.) containing 40 g L-1 Tryptic Soy 

Agar (TSA) medium. All the isolates were obtained from the roots and rhizosphere of potato 

plantations in Ecuador and selected for their capacity to produce indole-3-acetic acid (IAA) and 1-

aminocyclopropane-1-carboxylate (ACC deaminase) and to solubilize phosphorus and for their 

antagonistic activity against Rhizoctonia solani and Phytophthora infestans on plate essays. Table S1.   

Arbuscular mycorrhizal fungi  

A root organ culture (ROC) of Rhizophagus irregularis (Błaszk, Wubet, Renker and Buscot) C. 

Walker and A. Schüßler as [‘irregulare'] MUCL 41833 was supplied by the Glomeromycota in vitro 

collection (GINCO – www.mycorrhiza.be/ginco-bel. The strain was grown in association with Ri T-

DNA transformed carrot (Daucus carota L.) roots clone DC2 on Petri plates (90 mm diam.) 

containing the Modified Strullu Romand (MSR) medium (Declerck et al. 1998) solidified with 3 g L-1 

Phytagel (Sigma-Aldrich, St. Louis, USA), following the method detailed in Cranenbrouck et al. 

(2005). The Petri plates were incubated in the dark in an inverted position for several months until 

thousands of spores were obtained. 

Potato cultivars  

In vitro produced potato plantlets (Solanum tuberosum L., cv. Bintje, c.v. Unica and cv. I-Fripapa) 

were provided by the “Station de Haute Belgique” in Libramont (Belgium) for the first cultivar and by 

the School of Biological Earth and Environmental Sciences of University College Cork (Ireland) for 

the two others. Nodal cuttings were sub-cultured on 4.412 g L-1 Murashige and Skoog (MS) medium 

(Duchefa, Biochemie. Haarlem, Netherlands) supplemented with 20 g L-1 sucrose, 3 g L-1 Phytagel 

and adjusted to pH 5.9 before sterilization (121°C for 15 min). Plantlets were kept in a growth 

chamber (21/18 °C day/night, relative humidity (RH) of 70%, photoperiod of 16 h d-1 and 
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photosynthetic photon flux of 225 μmol m2 s-1) until use. 

Co-entrapment of PGPR and AMF in alginate beads  

The seven PGPRs were cultured at 28 °C in 250 ml flasks containing 50 ml Tryptic Soy Broth (TSB) 

at 30 g L-1, and maintained under agitation at 150 rev. min-1 during 48 hours. The bacterial 

concentration of each PGPR was estimated following the method detailed in Reynolds (2011). 

Briefly, a standard curve was drawn for each isolate by plotting the number of CFU ml-1 obtained by 

the standard plate count method against the absorbance at 600 nm of several dilutions with a known 

amount of CFU ml-1. Concentration of each culture was then adjusted to 3x108 CFU ml-1 in a final 

volume of 30 ml of sterile TSB and centrifuged (14,000 x g, 15 min at 4°C) to recover the bacterial 

cells. The bacterial pellets were re-suspended into a Petri plate (90 mm diam.) containing 30 ml of 

sterilized (15 min, 121°C) sodium alginate (Sigma-Aldrich, St. Louis, USA) at 20 g L-1 (Declerck et 

al. 1996).  

In parallel, a plug of gel from the ROC of R. irregularis MUCL 41833 containing thousands of spores 

was dissolved in 0.01 mol-1 citrate buffer (Doner and Bécard 1991). An approximate of 2000 healthy-

looking spores was transferred to a 90 mm diam. Petri plate containing sterilized (121°C for 15 min) 

deionized water. Clusters of spores were separated with needles under a stereomicroscope (Olympus 

SZ61) at 45 X magnification to obtain individual spores. Hundreds of spores were finally transferred 

to the Petri plates containing the PGPR isolates. All combinations of the seven PGPRs and R. 

irregularis MUCL 41833 and a control (without PGPR) were entrapped in alginate beads via 

polymerization with calcium chloride.  In experiment 1 below, each ~10 μL volume bead contained 

one single spore of R. irregularis MUCL 41833 and ~ 3x105 CFU of the PGPR, while in experiment 2 

below, each ~50 μL volume bead contained 25 ± 5 spores and ~ 3x105 CFU of the PGPR. The number 

of AMF spores per bead in experiment 2 was quantified under a stereomicroscope (Olympus SZ61) at 

45X magnification in ten ~50 μL droplets of the sodium alginate solution and the results averaged. 

The concentration of spores was adjusted to 25 ± 5 spores/bead by adding more spores or alginate to 

the solution. 
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For the entrapment in alginate beads sodium alginate drops containing the AMF and the PGPR at the 

concentration detailed above were taken with a micropipette and dropped into a sterilized (121°C for 

15 min) solution of 0.1 mol-1 CaCl2 maintained under constant agitation during 30 minutes for 

polymerization. The alginate beads were subsequently sieved on a 1 mm sterile sieve and rinsed with 

sterilized (121 °C for 15 min) deionized water.  

Experiment 1: Evaluation of the percentage of potentially infective beads following co-entrapment of 

R. irregularis MUCL 41833 with the seven PGPRs. 

Each of the seven PGPRs were tested as follows: five beads each containing 1 single spore of AMF 

and 3x105 CFU of the PGPR were plated into single Petri plates (90 mm diam.) containing 30 ml of 

warm (approx. 50°C) liquid MSR medium prior to solidification. The beads were thus embedded into 

the gel. Twenty Petri plates (each containing 5 beads were prepared and incubated in the dark at 27°C 

for 30 days. Each Petri plate was considered as a replicate.  

The percentage of potentially infective beads (%PIB) originally developed by Declerck et al. (1996) 

to evaluate the percentage of beads containing at least one germinated AMF spore was adapted in the 

current study following De Jaeger et al. (2011) by evaluating the percentage of beads in which the 

hyphae from the germinated spore crossed the calcium alginate coating and developed into the 

medium. Data were plotted against time.  

Hyphae length was further determined at day 30 on 20 potential infective beads (i.e. showing hyphal 

re-growth outside the alginate bead) randomly selected per treatment. Measurement was done from 

the edge of the bead to the hyphal tip under a stereomicroscope (Olympus SZ61 at 42X 

magnification) with an eyepiece reticle calibrated with a stage micrometer. The second and third order 

hyphae were counted and their length similarly measured as above. We selected this method instead 

of the measurement of the total length (i.e. from the spore subtending hyphae to the hyphal tip) 

because hyphal development (i.e. length and branching) outside the bead is a determinant factor for 

root colonization.  

Experiment 2: Impact of the best PGPR from Experiment 1 on R. irregularis MUCL 41833 
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extraradical mycelium development, spore production and root colonization of potato plantlets  

The best performing PGPR promoting %PIB and hyphal elongation and branching of R. irregularis 

MUCL 41833 in Experiment 1 was selected to evaluate its effects on the extraradical mycelium 

(ERM) length, spore production and percentage of root length colonization (%RLC) following 

association with three potato cultivars. 

Three beads, each containing 25 ± 5 spores of the AMF and 3x105 CFU of the PGPR were plated in 

Petri plates (90 mm diam.) in 30 ml of warm (50 °C) MSR medium lacking sucrose and vitamins. 

Before solidification of the MSR medium, the alginate beads were sorted evenly in the Petri plates. 

Petri plates were incubated during seven days in the dark at 27 °C. Afterwards, Half-closed 

Arbuscular Mycorrhizal (H-AMP) systems were set up with the three potato cultivars as described in 

Voets et al. (2005). Briefly, a hole (± 2 mm diam.) was made in the side and the lid of the Petri plates. 

A ten-day-old rooted nodal explant of potato was inserted in the hole with the roots plated on the 

medium and the shoot extending outside the Petri plate via the hole. The roots developed in the 

vicinity of the alginate beads. Petri plates were sealed with parafilm and the holes plastered with 

silicon grease. H-AMP systems were refilled weekly with sterilized MSR medium lacking sucrose 

and vitamins and kept during nine weeks in a growth chamber under the same conditions as above. 

Six treatments were thus considered with ten replicates (i.e. H-AMP systems): beads containing R. 

irregularis MUCL 41833 alone or in combination with Pseudomonas plecoglossicida R-67094 

inoculated to three potato cultivars (i.e. Bintje, Fripapa, and Unica):  Bin+R67094, Bin-R67094, Fri+R67094, 

Fri-R67094, Uni+R67094, Uni-R67094. 

ERM development and dynamics of spore production  

The ERM development was estimated at week 4 and 9 as described in Declerck et al. (2003). Briefly, 

a 10 mm grid of lines was marked on the bottom of the Petri plates. The total number of 

hyphae/gridline intersects was evaluated under a stereomicroscope (Olympus SZ61 at 45 X 

magnification) and used to estimate the total length of ERM with the formula: R = πNA/2H, where N 

is the number of intersections, A the area in which the hyphae lies, H the total length of the straight 
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lines, and R the total length of hyphae in the Petri plate.  

The number of newly produced spores per H-AMP system was further evaluated at week 5, 6, 7, 8, 9 

according to Declerck et al. (2001). The number of spores was counted in three 1 cm2 cells of the grid 

above. The cells were distributed along a transect from upper to mid and lower part of the Petri plates. 

The same cells in the grid were always followed for each Petri plate. The number of spores was 

subsequently extrapolated to the entire Petri plate.  

Potato root colonization 

The potato plantlets were harvested after nine weeks. The roots were stained according to Urgiles et 

al. (2009) with slight modifications. Briefly, the roots were cut into 1 cm length segments, cleared 

with 10% KOH at 60°C for 30 minutes, rinsed three times with tap water, acidified in 10% HCl for 1 

minute and stained with 0.05% methyl blue in 90% lactic acid for 30 minutes at 60°C. Root pieces 

were then distained in 50% lactic acid overnight to get rid of the excess of methyl blue. Thirty 

randomly selected root pieces (1 cm length) from each replicate were finally mounted on microscope 

slides (ten per slide) and analysed for AMF colonization under a bright-field light microscope (Leitz 

Wetzlar, Germany) at 100X and 400X magnifications. The frequency of colonization (%F) was 

determined by the formula: %F = (N - no/ N) x100, where N is the number of observed fragments and 

n0 is the number of fragments without traces of colonization. The root length colonization (%RLC) 

also known as intensity of colonization was estimated using colonization classes where: 0 = 0%, 1 ≤ 

1%, 2 = 2-10%, 3 = 11-50%, 4 = 51-90, 5 > 90% assigned to each root fragment depending on the 

percentage of the root length colonized by AMF (Trouvelot et al. 1986). The final RLC% was 

calculated as an average of 30 root pieces using the formula: %RLC = (95n5+70n4+30n3+5n2+n)/N; 

where n5, n4, n3, n2, n is respectively the number of fragments scaled as 5, 4, 3, 2, 1 and N is the total 

number of fragments observed. 

Statistical analyses 

All variables were tested for homogeneity of variances and normality using the tests after Levene and 

Kolmogorov-Smirnov, respectively. The results of Experiment 1 were submitted to one-way 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ANOVA. The data of percentages were first arcsin square root transformed to fulfil the requirements 

for a parametric analysis. The results of experiment 2 were analysed via a two-way ANOVA to test 

the effects of cultivars and the presence of the bacteria. Simple pair comparisons were carried out 

with T test (P<0.05). The data were analysed using the software SPSS Statistics 20. 

Results 

Experiment 1: Evaluation of the percentage of potentially infective beads following co-entrapment of 

R. irregularis MUCL 41833 with the seven PGPR 

The seven PGPR developed within the beads and in the surrounding MSR medium within 48h of 

incubation. The first germinated spores of R. irregularis were observed within the beads after 3 days 

of incubation in the control (i.e. in absence of bacteria) treatment as well as and in presence of most 

bacteria. However, in the treatments containing the bacterial isolate Pseudomonas plecoglossicida R-

67094 and Pseudomonas granadensis R-67095 it was not possible to visualize the spores and thus to 

ascertain spore germination, due to a dense bacterial growth inside the beads. The first hyphal 

regrowth outside the alginate coating were observed after 4 - 5 days of incubation. The %PIB was 

evaluated every 5 days starting day 5 until day 30 and plotted against time. The %PIB varied with the 

bacterial isolate and time of observation (Table 1). In the presence of the isolate Serratia sp. R-67091, 

P. granadensis R-67095, P. extremaustralis R-49547 and Bacillus subtilis LMG 24418, the %PIB 

was null at any time of evaluation. These isolates were subsequently excluded from the statistical 

analysis and only the isolates P. plecoglossicida R-67094, B. amyloliquefaciens LMG 24415 and B. 

subtilis LMG 24423 and the control were considered (Table 1). No significant differences in %PIB 

were noticed between the treatments at day 5, 10 and 15 (Table 1). Similarly, at day 20, 25 and 30, no 

significant differences were noticed in %PIB between the P. plecoglossicida R-67094 treatment and 

the control treatment. Conversely, the %PIB of both these treatments was significantly higher as 

compared to the treatments with B. amyloliquefaciens LMG 24415 and B. subtilis LMG 24423 at days 

25 and 30 and at day 20 for P. plecoglossicida R-67094. No significant difference in %PIB was 

observed between the treatments B. amyloliquefaciens LMG 24415 and B. subtilis LMG 24423 at any 
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time of observation. Both treatments significantly inhibited the %PIB as compared to the control at 

day 25 and 30 (Table 1).  

The length of germ tube, 2nd and 3rd order hyphae as well as total hyphal length of the AMF 

significantly differed between the treatments (Table 2). Whatever the parameter, length was 

significantly increased in the treatment with P. plecoglossicida R-67094 as compared to the three 

other treatments. Similarly, the length of germ tube of the control treatment was significantly 

increased as compared to the treatments with B. amyloliquefaciens LMG 24415 and B. subtilis LMG 

24423, while no differences between these three treatments was noticed for length of 2nd and 3rd order 

hyphae and total length of hyphae (Table 2).  

The number of 2nd, 3rd and total number of hyphal branches was significantly increased for the 

treatment with P. plecoglossicida R-67094 as compared to the control, B. amyloliquefaciens LMG 

24415 and B. subtilis LMG 24423 treatments. No significant differences were noticed between these 

three later treatments for any of the parameters (Table 2). 

Experiment 2: Impact of the best PGPR from Experiment 1 on R. irregularis MUCL 41833 ERM 

development, spore production and root colonization of potato plantlets  

The first hyphae of R. irregularis MUCL 41833 growing outside the beads were observed after five 

days of incubation in presence as well as in absence of P. plecoglossicida R-67094 (Figure S1). The 

beads were incubated during seven days before association to potato plantlets. At that time, 100% of 

the Petri plates contained at least one potentially infective bead. After two weeks of association, the 

first contacts between hyphae and roots were observed with the three potato cultivars regardless of the 

presence of P. plecoglossicida R-67094.  

At week 4, a significant effect of “P. plecoglossicida R-67094” was noticed on the ERM length of the 

AMF, while no effect of the “potato cultivar” or the interaction (R-67094 x potato cultivar) was 

observed (Table 3). The ERM length in the treatments Bin+R67094 and Fripapa+R67094 were significantly 

shorter as compared with their respective controls, while no significant difference was noticed 
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between Uni+R67094 and Uni-R67094 (Figure 1). At week 9 a significant effect of “potato cultivar” as well 

as “P. plecoglossicida R-67094” was noticed on ERM length, while no effect for their interaction 

(Table 3). Contrarily to week 4, the ERM length of the AMF in the treatment Bin+R67094 was 

significantly larger (P=0.003) as compared to its respective control Bin-R67094. The relative increase in 

ERM due to P. plecoglossicida R-67094 was 54,6%. No significant differences were observed 

between the treatments Fri+R67094 and Fri-R67094 (P=0.168) or Uni+R67094 and Uni-R67094 (P=0.354) (Figure 

1). The ERM length at week 9 also differed significantly among cultivars. Pairwise comparisons 

showed significant differences between cultivars Bintje and Unica (P=0.013) and Fripapa and Unica 

(P=0.001) but not Bintje and Fripapa (P=0.346) regardless of the presence of P. plecoglossicida (data 

not shown). 

The first spores of R. irregularis MUCL 41833 were observed four weeks following association with 

the potato plants and increased gradually from week 5 onwards, whatever the cultivar and 

presence/absence of P. plecoglossicida R-67094 (Figure 2).   

The effect of the factor “potato cultivar” on the number of spores was significant at weeks 6 and 8 

(Table 4), while the effect of the factor “P. plecoglossicida R-67094” was significant at weeks 7 and 

9. No effects of the interaction potato cultivar x P. plecoglossicida R-67094 was observed at any time 

of spore enumeration (Table 4). Regardless of the potato cultivar, the number of spores of the AMF in 

presence of P. plecoglossicida R-67094 was superior to the control, starting at week 6 (Figure 2). 

Pairwise comparisons within the cultivar Bintje showed a significantly higher number of spores of the 

AMF in the treatment with P. plecoglossicida R-67094 at weeks 7 (P=0.025), 8 (P=0.016) and 9 

(P=0.005), with relative increments of 47, 53 and 66%, respectively as compared to its respective 

control. Within cultivar Fripapa, a significant increase at week 9 (P=0.022) in presence of P. 

plecoglossicida R-67094 with a relative increment of 44% was noticed, while no significant increase 

was noticed with cultivar Unica at any time (Figure 2). Regardless of the presence of P. 

plecoglossicida R-67094, the production of spores also differed significantly among cultivars. 

Pairwise comparisons at week 9 showed that R. irregularis produced significantly (P=0.010) more 

spores (44% higher) when associated to cultivar Fripapa, compared to the cultivar Bintje. Similarly, 
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the cultivar Unica produced significantly (P=0.047) more spores compared with the cultivar Bintje 

(50% higher), but not differences between cultivars Unica and Fripapa were detected (P=0.663), data 

not shown.  

At the end of the experiment (week 9) microscopic observations of the roots revealed the presence of 

intraradical hyphae, arbuscules and vesicles/spores in the three cultivars either in the presence as well 

as absence of P. plecoglossicida R-67094. A significant effect of the factors “potato cultivar” and “P. 

plecoglossicida R-67094” was observed on the %F and %RLC, while no effect of their interaction 

(Table 4). Pairwise comparisons within cultivars showed that in presence of P. plecoglossicida R-

67094, the %F was higher independently of the potato cultivar but differences were only significant 

for cultivars Fripapa (P=0.025) and Unica (P=0.001) (Figure 3). Similarly, the %RLC was 

significantly affected by the factors “potato cultivar” and “P. plecoglossicida R-67094”, while not for 

their interaction (Table 4). Pairwise comparisons within the same cultivars showed that the presence 

of P. plecoglossicida R-67094 significantly increased the %RLC in the cultivars Bintje (P=0.029), 

Fripapa (P<0.0001) and Unica (P=0.001) compared to the respective controls (Figure 3).  

Discussion 

The growing need for environmental-friendly and cost-effective agricultural practices is supporting 

the use of a broad range of beneficial microorganisms comprising bacteria and fungi. Among these 

are the AMF. However, even though the inoculation of plants with these fungi is a well-known 

practice, their formulation with a reliable and consistent effect under field conditions is still a problem 

for their wider exploitation (Rodriguez and Sanders 2015). Within soil, numerous plant growth-

promoting microrganisms work synergistically to improve plant growth (Barea et al. 2002, 2005; 

Saxena et al. 2006; Adesemoye et al. 2008). Considering that associations between bacteria and AMF 

have been reported to promote mycorrhizal symbiosis (Gamalero et al. 2004; Artursson et al. 2006; 

Pivato et al. 2009; Ramasamy et al. 2011), formulations that include adequate combinations of 

bacteria and AMF may open novel opportunities for microbial formulation (Adesemoye et al. 2008, 

Adesemoye and Kloepper 2009; Malusá et al. 2012).  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

In the present study, all the seven bacteria entrapped in beads, were able to develop inside as well as 

to proliferate outside the beads. A similar observation was made for the AMF in the absence of 

bacteria. The fungus was able to germinate and grow outside the bead as earlier reported by Declerck 

et al. (1996) with Glomus versiforme and by De Jaeger et al. (2011) with R. irregularis MUCL 

41833. 

In presence of bacteria the AMF behaved differently. Indeed, six out of the seven PGPR tested in our 

study strongly decreased or completely inhibited the %PIB and thus impacted the AMF. This was not 

totally surprising, since members of several species of Bacillus (Swain et al. 2009; Govindasamy et 

al. 2010) and Pseudomonas (de Bruijn et al. 2007; Weller 2007; Raaijmakers et al. 2010; Beneduzi et 

al. 2012) have been reported to produce compounds able to suppress the growth of a wide range of 

bacteria, fungi oomycetes, protozoa, nematodes and plants. These compounds include broad-spectrum 

antibiotics, lactic acid, lytic agents and numerous types of exotoxins as well as bacteriocins (Riley and 

Wertz 2002). All the PGPRs used in the present study showed antagonistic effects against R. solani 

and P. infestans (Table S1). Therefore, it cannot be excluded that these isolates also produced 

compounds with inhibitory effects on spore germination and hyphal elongation of R. irregularis 

MUCL 41833 and hence decreased substantially the %PIB. Interestingly, a number of studies also 

reported that some PGPR can stimulate mycorrhizal symbiosis (Budi et al. 1999, Fernandez et al. 

2011). This was obviously the case for P. plecoglossicida R-67094, which was the only isolate that 

favoured the development of R. irregularis. Curiously this isolate also showed antagonistic effects 

against R. solani (38.6%) and P. infestans (25.3%) in dual culture plates (Table S1). It is possible that 

P. plecoglossicida R-67094 produces antifungal compounds but at doses not affecting AMF as well as 

stimulatory compounds active on the fungal symbiont. Even if the %PIB was not significantly 

increased in presence of this bacterium as compared to the control, a significant stimulatory effect was 

noticed on the pre-symbiotic hyphal growth and branching of the AMF suggesting the release of some 

stimulatory compounds such as exudates or volatiles by the bacteria. Fernández et al. (2011) also 

reported a promoting effect of two IAA producing Paenibacillus strains on the pre-symbiotic 

development of germinated spores of Glomus intraradices but a little impact on germination. 
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However, earlier studies showed the stimulatory effect of the volatiles geosmin, 2-methyl isoborneol 

and CO2 produced by Streptomyces, Streptosporangium, and Nocardia (Actinobacteria) on the 

germination of spore of Gigaspora margarita (Carpenter-Boggs et al. 1995). More recently, 

Streptomyces sp., S. griseus and S. albogriseus were reported to increase germination of G. margarita 

spores probably via the release of gaseous compounds although the presence of diffusible exudates 

could not be excluded (Aliasgharzad et al. 2012). Although a number of studies have reported on the 

effects of different bacteria on germination and root colonization of AMF, the specific compounds 

and the mechanisms involved remain almost unknown. The stimulatory effects of P. plecoglossicida 

R-67094 on hyphal elongation and branching is likely to increase the chances of contact between 

hyphae and roots of a suitable host.  

Interestingly, P. plecoglossicida R-67094 also increased the production of a profuse extraradical 

mycelium bearing numerous spores and improved root colonization of the AMF when associated to 

potato plants. Similar results were obtained with IAA-producing Paenibacillus strains (P. 

rhizosphaerae and P. favisporus); but only P. rhizosphaerae strain improved the symbiotic 

development of the AMF G. intraradices. However, the relation between IAA production and AMF 

development could not be proven with certainty (Fernández et al. 2011). Our results are in agreement 

with the findings of Barea et al. (1998), who tested the effect of three fungal antagonistic 

Pseudomonas strains (F113, F113G22 and F113 (pCU203)) on the arbuscular mycorrhiza formation. 

They found a positive effect of the first two strains on spore germination, mycelial growth and root 

colonization of Funneliformis mosseae in tomato plants. Similarly, Pivato et al. (2009) found a strong 

stimulatory effect of Pseudomonas fluorescens C7R12. This bacterial strain promoted the pre-

symbiotic and symbiotic development of F. mosseae but not of G. rosea in M. truncatula and L. 

esculentum plants indicating a specific effect.  

The above-mentioned results are in favor of the hypothesis that P. plecoglossicida R-67094 functions 

as mycorrhiza helper bacteria (MHB). The term MHB has been defined as the group of bacteria able 

to “promote the establishment of symbiosis by stimulating mycelial extension; increasing root–fungus 

contacts and colonization; and reducing the impact of adverse environmental conditions on the 
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mycelium of the mycorrhizal fungi” (Frey-Klett et al. 2007). MHB have evolved selective 

mechanisms of interaction with the surrounding microbial communities such as favoring mycorrhizal 

association but competing with root pathogens that might threaten their habitat (Frey-Klett et al. 

2007). Mechanisms for AMF spore germination seem to include the production of volatiles and CO2 

(Carpenter-Boggs et al. 1995). Another commonly observed characteristic of MHB is the stimulation 

of lateral root formation (Frey-Klett et al. 2007). This effect was also reported with IAA or other 

signal-producing PGPR impacting root architecture (Vacheron et al. 2014). The changes on root 

morphology were not evaluated in the present study. However, it is likely that IAA producing P. 

plecoglossicida R-67094 stimulated lateral root formation and subsequent increase the number of 

entry points at which plant and fungus interacted. 

Independently of the presence of P. plecoglossicida R-67094, spore production, ERM development 

and root colonization varied markedly among the potato cultivars suggesting a clear role of the plant 

genotype on AMF symbiotic development. Voets et al. (2005) reported similar observations with five 

potato cultivars associated with R. irregularis MUCL 43194 under in vitro culture conditions. They 

noticed that spore production varied markedly among the cultivars. Similarly, inoculation of five 

durum wheat cultivars with R. irregularis DAOM 197198 in a greenhouse experiment under low and 

medium soil fertility resulted in different levels of root colonization, as well as different plant growth 

benefits among cultivars. The authors concluded that differences in mycorrhiza formation and 

function among cultivars depend on their degree of compatibility with the AMF (Singh et al. 2012). 

Although we did not evaluate plant growth in our experiment, numerous studies have reported that 

plant species (e.g. Klironomos 2003; Tawaraya 2003) as well as cultivars within a same species (e.g. 

Declerck et al. 1995; Vosátka and Gryndler 2000; Linderman and Davies 2003; Estaún et al. 2010) 

can respond differently to inoculation with AMF. Mycorrhizal dependency has been closely related 

with root characteristics such as fibrousness (in different primitive and modern wheat cultivars 

(Hetrick et al. 1992)) and the volume of root system, length and density of root hairs (in banana 

cultivars (Declerck et al. 1995). In order to evaluate the impact of differential of AMF development 

observed among potato cultivars in our in vitro experiment (e.g. AMF compatibility and mycorrhizal 
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dependency) additional tests need to be conducted under greenhouse and field conditions.  

Interestingly, in the presence of P. plecoglossicida R-67094 there was also an effect of the bacteria on 

the AMF symbiotic development suggesting either a direct effect of the bacteria on the fungus or an 

indirect effect on the AMF via the plant. In either of both scenarios it is most probable that P. 

plecoglossicida R-67094 behave as a MHB by promoting mycorrhizal development in the pre-

symbiotic as well as the symbiotic phase.  

The results of the present study demonstrated the importance of a preliminary selection of AMF-

PGPR combinations prior to formulation. The co-entrapment in alginate beads of P. plecoglossicida 

R-67094 and R. irregularis MUCL 41833 had a positive effect on the mycorrhizal symbiosis in potato 

plants. P. plecoglossicida has been reported as a dominant bacterial taxon in the rhizosphere of 

banana (Naik et al. 2008) and sugar cane (Rameshkumar et al. 2012). Furthermore the fact that this 

PGPR was also isolated from potato plantations in Ecuador in combination together with its capacity 

to solubilize phosphorus, produce IAA and act as antagonist against soil-borne pathogens (Naik et al. 

2008; Rameshkumar et al. 2012) makes it a good candidate for microbial formulations (Jha et al. 

2009) for potato cropping. Our study represents a promising step towards the formulation of context-

adjusted microbial inoculants aimed to improve the establishment of arbuscular mycorrhizal 

inoculum. Further steps will be required to fine-tune alginate co-encapsulation technology, especially 

regarding shelf-life of inocula. Additionally greenhouse and field essays will bring new light on the 

effect of encapsulated microorganisms on potato growth. 
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Tables and Figures:  

Table 1. Percentage of potentially infective beads (%PIB) estimated as the % of beads with 

germinated spores of R. irregularis MUCL 41833 showing hyphal regrowth crossing the calcium 

coating of the bead in presence or absence (i.e. the control) of different PGPRs of plant growth 

promoting rhizobacteria.  

  Percentage of Potentially Infective Beads (%PIB) 

   5 10        15     20 25   30 
P. plecoglossicida R-67094  1.8 ± 1.3

a
 3.6 ± 1.7

a
10 ± 2.5 

a
33.1 ± 4.4

a
58.3 ± 6.5

a
68.6 ± 6.8

a
 

B. amyloliquefaciens LMG 24415 0
a
 0.9 ± 0.9

a
5.2 ± 3

a
11.2 ± 3.9

bc
11.2 ± 3.9

b
12.1 ± 4.3

b
 

B. subtilis LMG 24423  0.9 ± 0.9
a
 2.7 ± 1.5

a
6.4 ± 2

a
6.4 ± 2.0

c
6.4 ± 2

b
6.4 ± 2.0

b
 

Control 0
a
 0.9 ± 0.9

a
10.2 ± 3

a
23 ± 3.7

ab
47.4 ± 5.1

a
56.5 ± 6.2

a
 

Values represent Means ± SE of 20 replicates. Values in the same column followed by identical letter 

did not differ significantly (P<0.05, Tukey’s test).  
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Table 2. Hyphal length and number of hyphal branches of spores of R. irregularis MUCL 41833 

entrapped in alginate beads in presence or absence (i.e. the control) of different PGPRs of plant 

growth promoting rhizobacteria. 

 
 
 
 

Hyphal length  
(mm) 

Number of hyphal 
branches 

Germ tube 2nd order 
branches 

3rd order 
branches 

Total length 2nd order 3rd order Total 
branches 

P. plecoglossicida R-67094  26.1 ± 1.2
a

6.1 ± 0.9
a
 6.2 ± 1.5

a
38.5 ± 2.3

a
15 ± 1.5

a
26.5 ± 4.5

a
41.4 ± 5.5

a 

B. amyloliquefaciens LMG 24415 1.7 ± 0.5
c

0.3 ± 0.1
b
 0.2 ± 0.1

b
2.2 ± 0.5

b
2 ± 0.3

b
2.1 ± 0.5

b
4.1 ± 0.6

b
 

B. subtilis LMG 24423  0.4 ± 0.2
c

0
b
 0

b
0.4 ± 0.2

b
0

b
0

b
0

b
 

Control  6.9 ± 0.9
b

0.5 ± 0.2
b
 0.02 ± 0.0

b
7.4 ± 0.9

b
1.5 ± 0.5

b
0.2 ± 0.2

b
1.7 ± 0.6

b
 

Values represent Means ± SE of 10-20 replicates (The isolates LMG 24415 and LMG 24423 

decreased %PIB and hence a low number of spores were available for evaluations). Values in the 

same column followed by identical letter did not differ significantly (P<0.05, Tukey’s test).  

 

 

Table 3. Two-way ANOVA for main effects of “potato cultivar”, “P. plecoglossicida R-67094” and 

their interaction on the length of the extraradical mycelium (ERM) of R. irregularis MUCL 41833, 4 

and 9 weeks following co-entrapment in alginate beads with/without P. plecoglossicida R-67094 and 

association to three potato cultivars (Bintje, Fripapa and Unica).  

 ERM length (mm) 

Treatments Week 4 Week 9 
Potato Cultivar 0.800 0.002** 
R-67094 <0.001*** 0.017* 
Potato Cultivar x R-67094 0.441 0.589 

Significant effects are marked with * for P<0.05, ** for P<0.01, and *** for P<0.001 
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Table 4. Two-way ANOVA for main effects of “potato cultivar”, “P. plecoglossicida R67094” and 

their interaction on the number of spores (from week 5 to 9) and root colonization of R. irregularis 

MUCL 41833. 

 
 Spore production (weeks) % Colonization 

5 6 7 8 9 %F  %RLC 
Potato cultivar 0.052 <0.001*** 0.060 0.026* 0.068 <0.001*** <0.001*** 
R-67094 0.251 0.273 0.027* 0.122 0.005** 0.001** <0.001*** 
Potato cultivar x R-67094 0.914 0.863 0.668 0.945 0.994 0.054 0.131 

Significant effects are marked with * for P<0.05, ** for P<0.01, and *** for P<0.001 
 

Figure 1. Length of extraradical mycelium (ERM) of Rhizophagus irregularis MUCL 41833 grown 

in presence/absence of P. plecoglossicida R-67094, 4 (a) and 9 (b) weeks following association with 

potato cultivars Bintje, Fripapa and Unica.  The bars represent means ± SE of treatments without 

(white) and with (grey) P.plecoglossicida (R-67094), n=10. T tests were carried out within each 

cultivar to compare the mean values at each time point with the respective control treatment.  * 

P<0.05, **P<0.01, P<0.001. 

 

Figure 2. Spore production of Rhizophagus irregularis MUCL 41833 in presence/absence of P. 

plecoglossicida R-67094 and associated to potato cultivars Bintje (a), Fripapa (b) and Unica (c) from 

week 5 to 9. The bars represent means ± SE of treatments without (white) and with (grey) 

Pseudomonas plecoglossicida (R-67094), n=10. T tests were carried out within each cultivar to 

compare the mean values at each time point with the respective control treatment.  * P<0.05, 

**P<0.01, P<0.001. 

 

Figure 3. Frequency (a) and root length colonization (b) of R. irregularis MUCL 41833 grown in 

presence/absence of P. plecoglossicida R-67094, 9 weeks following association with potato cultivars 

Bintje, Fripapa and Unica. The bars represent means ± SE of treatments without (white) and with 

(grey) Pseudomonas plecoglossicida (R-67094), n=10. T tests were carried out within each cultivar to 

compare the mean values in the presence of R-67094 with the respective control treatment.  * P<0.05, 

**P<0.01, P<0.001. 
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Legends for the Supporting Information 

 

Table S1. List of PGPR isolates used for entrapment with R. irregularis MUCL 41833.  

 

a EC1–4 = Ecuador, field 1–4 

b,c In vitro tests to determine biocontrol against R. solani and P. infestans, IAA and ACC production, 

and P solubilization were carried out in University College Cork (UCC).  

Percentage biocontrol was calculated with the formula: (C1-C2/C1)×100, where C1=total fungal 

growth of the control and C2=measured fungal growth in the presence of rhizobacteria. Values are 

means of five replicates.  

IAA: indole-3-acetic acid production (mg mL−1). Values are means of two replicates.  

PO4
3−sol. Phosphate solubilization. Isolates were rated on a scale of 0 to 5 depending on the halo 

diameter as follows: 0=no activity, 1=1-5 mm, 2=6-10 mm, 3=11-15 mm, 4=16-20 mm, 5=>20 mm. 

Values are means of four replicates.  

ACC: 1-aminocyclopropane-1-carboxylate deaminase activity (nmol (α-ketobutyrate) mg−1 h−1). 

Values are means of three replicates.  

nd, no data  

 

Figure S1. Alginate beads containing the AMF Rhizophagus irregularis MUCL 41833 in 

combination with P. plecoglossicida isolate R-67094 (a) or alone (b). The profuse growth of the 

PGPR within the alginate beads (a) made it difficult to visualize the spores inside the beads compared 

to the control  (b). Bar = 1000μm. 
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