50 research outputs found

    Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface

    Get PDF
    Plasma concentrations of biologically active vitamin D (1,25- (OH)2D) are tightly controlled via feedback regulation of renal 1-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)2D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface. In this study, we investigated the methylation status of genes regulating vitamin D bioavailability and activity in the placenta. No methylation of the VDR (vitamin D receptor) and CYP27B1 genes was found in any placental tissues. In contrast, the CYP24A1 gene is methylated in human placenta, purified cytotrophoblasts, and primary and cultured chorionic villus sampling tissue. No methylation was detected in any somatic human tissue tested. Methylation was also evident in marmoset and mouse placental tissue. All three genes were hypermethylated in choriocarcinoma cell lines, highlighting the role of vitaminDderegulation in this cancer. Gene expression analysis confirmed a reduced capacity for CYP24A1 induction with promoter methylation in primary cells and in vitro reporter analysis demonstrated that promoter methylation directly down-regulates basal promoter activity and abolishes vitamin D-mediated feedback activation. This study strongly suggests that epigenetic decoupling of vitamin D feedback catabolism plays an important role in maximizing active vitamin D bioavailability at the fetomaternal interface

    1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    Get PDF
    Background: The 1 alpha,25-dihydroxy-3-epi-vitamin-D(3) (1 alpha,25(OH)(2)-3-epi-D(3)), a natural metabolite of the seco-steroid vitamin D(3), exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1 alpha,25(OH)(2)-3-epi-D(3) is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1 alpha,25(OH)(2)D(3). To further unveil the structural mechanism and structure-activity relationships of 1 alpha,25(OH)(2)-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings: In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1 alpha,25(OH)(2)D(3). We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1 alpha,25(OH)(2)-3-epi-D(3) in primary human keratinocytes and biochemical properties are comparable to 1 alpha,25(OH)(2)D(3). Conclusions/Significance: The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1 alpha,25(OH)(2)D(3) lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1 alpha,25(OH)(2)D(3)

    Survivable Stereotaxic Surgery in Rodents

    No full text
    The ability to measure extracellular basal levels of neurotransmitters in the brain of awake animals allows for the determination of effects of different systemic challenges (pharmacological or physiological) to the CNS. For example, one can directly measure how the animal's midbrain dopamine projections respond to dopamine-releasing drugs like d-amphetamine or natural stimuli like food. In this video, we show you how to implant guide cannulas targeting specific sites in the rat brain, how to insert and implant a microdialysis probe and how to use high performance liquid chromatography coupled with electrochemical detection (HPLC-EC) to measure extracellular levels of oxidizable neurotransmitters and metabolites. Local precise introduction of drugs through the microdialysis probe allows for refined work on site specificity in a compound s mechanism of action. This technique has excellent anatomical and chemical resolution but only modest time resolution as microdialysis samples are usually processed every 20-30 minutes to ensure detectable neurotransmitter levels. Complementary ex vivo tools (i.e., slice and cell culture electrophysiology) can assist with monitoring real-time neurotransmission

    Expression of 25(OH)D3 24-hydroxylase in distal nephron: coordinate regulation by 1,25 (OH)2D3 and cAMP or PTH

    No full text
    Previous studies using microdissected nephron segments reported that the exclusive site of renal 25-hydroxyvitamin D3-24-hydroxylase (24OHase) activity is the renal proximal convoluted tubule (PCT). We now report the presence of 24OHase mRNA, protein, and activity in cells that are devoid of markers of proximal tubules but express characteristics highly specific for the distal tubule. 24OHase mRNA was undetectable in vehicle-treated mouse distal convoluted tubule (DCT) cells but was markedly induced when DCT cells were treated with 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]. 24OHase protein and activity were also identified in DCT cells by Western blot analysis and HPLC, respectively. 8-Bromo-cAMP (1 mM) or parathyroid hormone [PTH-(1-34); 10 nM] was found to potentiate the effect of 1, 25(OH)2D3 on 24OHase mRNA. The stimulatory effect of cAMP or PTH on 24OHase expression in DCT cells suggests differential regulation of 24OHase expression in the PCT and DCT. In the presence of cAMP and 1, 25(OH)2D3, a four- to sixfold induction in vitamin D receptor (VDR) mRNA was observed. VDR protein, as determined by Western blot analysis, was also enhanced in the presence of cAMP. Transient transfection analysis in DCT cells with rat 24OHase promoter deletion constructs demonstrated that cAMP enhanced 1, 25(OH)2D3-induced 24OHase transcription but this enhancement was not mediated by cAMP response elements (CREs) in the 24OHase promoter. We conclude that 1) although the PCT is the major site of localization of 24OHase, 24OHase mRNA and activity can also be localized in the distal nephron; 2) both PTH and cAMP modulate the induction of 24OHase expression by 1,25(OH)2D3 in DCT cells in a manner different from that reported in the PCT; and 3) in DCT cells, upregulation of VDR levels by cAMP, and not an effect on CREs in the 24OHase promoter, is one mechanism involved in the cAMP-mediated modulation of 24OHase transcription
    corecore