1,940 research outputs found
The Complete Characterization of Fourth-Order Symplectic Integrators with Extended-Linear Coefficients
The structure of symplectic integrators up to fourth-order can be completely
and analytical understood when the factorization (split) coefficents are
related linearly but with a uniform nonlinear proportional factor. The analytic
form of these {\it extended-linear} symplectic integrators greatly simplified
proofs of their general properties and allowed easy construction of both
forward and non-forward fourth-order algorithms with arbitrary number of
operators. Most fourth-order forward integrators can now be derived
analytically from this extended-linear formulation without the use of symbolic
algebra.Comment: 12 pages, 2 figures, submitted to Phys. Rev. E, corrected typo
Exploring Contractor Renormalization: Tests on the 2-D Heisenberg Antiferromagnet and Some New Perspectives
Contractor Renormalization (CORE) is a numerical renormalization method for
Hamiltonian systems that has found applications in particle and condensed
matter physics. There have been few studies, however, on further understanding
of what exactly it does and its convergence properties. The current work has
two main objectives. First, we wish to investigate the convergence of the
cluster expansion for a two-dimensional Heisenberg Antiferromagnet(HAF). This
is important because the linked cluster expansion used to evaluate this formula
non-perturbatively is not controlled by a small parameter. Here we present a
study of three different blocking schemes which reveals some surprises and in
particular, leads us to suggest a scheme for defining successive terms in the
cluster expansion. Our second goal is to present some new perspectives on CORE
in light of recent developments to make it accessible to more researchers,
including those in Quantum Information Science. We make some comparison to
entanglement-based approaches and discuss how it may be possible to improve or
generalize the method.Comment: Completely revised version accepted by Phy Rev B; 13 pages with added
material on entropy in COR
Quantum Statistical Calculations and Symplectic Corrector Algorithms
The quantum partition function at finite temperature requires computing the
trace of the imaginary time propagator. For numerical and Monte Carlo
calculations, the propagator is usually split into its kinetic and potential
parts. A higher order splitting will result in a higher order convergent
algorithm. At imaginary time, the kinetic energy propagator is usually the
diffusion Greens function. Since diffusion cannot be simulated backward in
time, the splitting must maintain the positivity of all intermediate time
steps. However, since the trace is invariant under similarity transformations
of the propagator, one can use this freedom to "correct" the split propagator
to higher order. This use of similarity transforms classically give rises to
symplectic corrector algorithms. The split propagator is the symplectic kernel
and the similarity transformation is the corrector. This work proves a
generalization of the Sheng-Suzuki theorem: no positive time step propagators
with only kinetic and potential operators can be corrected beyond second order.
Second order forward propagators can have fourth order traces only with the
inclusion of an additional commutator. We give detailed derivations of four
forward correctable second order propagators and their minimal correctors.Comment: 9 pages, no figure, corrected typos, mostly missing right bracket
Forward Symplectic Integrators and the Long Time Phase Error in Periodic Motions
We show that when time-reversible symplectic algorithms are used to solve
periodic motions, the energy error after one period is generally two orders
higher than that of the algorithm. By use of correctable algorithms, we show
that the phase error can also be eliminated two orders higher than that of the
integrator. The use of fourth order forward time step integrators can result in
sixth order accuracy for the phase error and eighth accuracy in the periodic
energy. We study the 1-D harmonic oscillator and the 2-D Kepler problem in
great details, and compare the effectiveness of some recent fourth order
algorithms.Comment: Submitted to Phys. Rev. E, 29 Page
Fourth Order Algorithms for Solving the Multivariable Langevin Equation and the Kramers Equation
We develop a fourth order simulation algorithm for solving the stochastic
Langevin equation. The method consists of identifying solvable operators in the
Fokker-Planck equation, factorizing the evolution operator for small time steps
to fourth order and implementing the factorization process numerically. A key
contribution of this work is to show how certain double commutators in the
factorization process can be simulated in practice. The method is general,
applicable to the multivariable case, and systematic, with known procedures for
doing fourth order factorizations. The fourth order convergence of the
resulting algorithm allowed very large time steps to be used. In simulating the
Brownian dynamics of 121 Yukawa particles in two dimensions, the converged
result of a first order algorithm can be obtained by using time steps 50 times
as large. To further demostrate the versatility of our method, we derive two
new classes of fourth order algorithms for solving the simpler Kramers equation
without requiring the derivative of the force. The convergence of many fourth
order algorithms for solving this equation are compared.Comment: 19 pages, 2 figure
Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. II: Higgs sheaves and admissible structures
We study the basic properties of Higgs sheaves over compact K\"ahler
manifolds and we establish some results concerning the notion of semistability;
in particular, we show that any extension of semistable Higgs sheaves with
equal slopes is semistable. Then, we use the flattening theorem to construct a
regularization of any torsion-free Higgs sheaf and we show that it is in fact a
Higgs bundle. Using this, we prove that any Hermitian metric on a
regularization of a torsion-free Higgs sheaf induces an admissible structure on
the Higgs sheaf. Finally, using admissible structures we proved some properties
of semistable Higgs sheaves.Comment: 18 pages; some typos correcte
Positivity of relative canonical bundles and applications
Given a family of canonically polarized manifolds, the
unique K\"ahler-Einstein metrics on the fibers induce a hermitian metric on the
relative canonical bundle . We use a global elliptic
equation to show that this metric is strictly positive on , unless
the family is infinitesimally trivial.
For degenerating families we show that the curvature form on the total space
can be extended as a (semi-)positive closed current. By fiber integration it
follows that the generalized Weil-Petersson form on the base possesses an
extension as a positive current. We prove an extension theorem for hermitian
line bundles, whose curvature forms have this property. This theorem can be
applied to a determinant line bundle associated to the relative canonical
bundle on the total space. As an application the quasi-projectivity of the
moduli space of canonically polarized varieties
follows.
The direct images , , carry natural hermitian metrics. We prove an
explicit formula for the curvature tensor of these direct images. We apply it
to the morphisms that are induced by the Kodaira-Spencer map and obtain a differential
geometric proof for hyperbolicity properties of .Comment: Supercedes arXiv:0808.3259v4 and arXiv:1002.4858v2. To appear in
Invent. mat
Attosecond electron spectroscopy using a novel interferometric pump-probe technique
We present an interferometric pump-probe technique for the characterization
of attosecond electron wave packets (WPs) that uses a free WP as a reference to
measure a bound WP. We demonstrate our method by exciting helium atoms using an
attosecond pulse with a bandwidth centered near the ionization threshold, thus
creating both a bound and a free WP simultaneously. After a variable delay, the
bound WP is ionized by a few-cycle infrared laser precisely synchronized to the
original attosecond pulse. By measuring the delay-dependent photoelectron
spectrum we obtain an interferogram that contains both quantum beats as well as
multi-path interference. Analysis of the interferogram allows us to determine
the bound WP components with a spectral resolution much better than the inverse
of the attosecond pulse duration.Comment: 5 pages, 4 figure
- …
