research

Forward Symplectic Integrators and the Long Time Phase Error in Periodic Motions

Abstract

We show that when time-reversible symplectic algorithms are used to solve periodic motions, the energy error after one period is generally two orders higher than that of the algorithm. By use of correctable algorithms, we show that the phase error can also be eliminated two orders higher than that of the integrator. The use of fourth order forward time step integrators can result in sixth order accuracy for the phase error and eighth accuracy in the periodic energy. We study the 1-D harmonic oscillator and the 2-D Kepler problem in great details, and compare the effectiveness of some recent fourth order algorithms.Comment: Submitted to Phys. Rev. E, 29 Page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020