13 research outputs found

    Supramolecular complex formed by DNA oligonucleotide and thiacalix[4]arene. NMR-spectroscopy and molecular docking

    Get PDF
    The combination of NMR-spectroscopy and molecular docking was applied to investigate the complexation of thiacalix[4]arene with DNA. We have studied the structure of supramolecular complex formed by palindromic decamer DNA d(GCGTTAACGC)2 and tetrasubstituted at lower rim of p-tert-butyl thiacalix[4]arene in 1,3-alternate conformation. With the help of NMR it is shown that oligonucleotide in solution exists in two states: double-stranded helix (dominant structure in solution) and single-stranded form (minor structure) rolled up in a "hairpin" with equilibrium between them. Both complementary methods, NMR and molecular docking, revealed the formation of molecular complex by thiacalix[4]arene and palindromic decamer DNA. Different possible conformations of the complexes were analyzed by means of molecular docking. We used the experimental constraints in molecular docking to identify the complexes, which were in agreement with the NMR data. © 2014 Elsevier B.V. All rights reserved

    Characterization of Three Carbon- and Nitrogen-Rich Particles from Comet 81P/WILD

    Get PDF
    Comets may sample the early solar system s complement of volatile-forming elements - including C and N - more fully and reliably than do the terrestrial planets or asteroids. Until recently, all elemental analyses of unambiguously cometary material were carried out remotely. The return of the Stardust mission makes it possible to analyze documented material from P81/Wild 2 in the laboratory Wild 2 particles fragmented when they stopped in the aerogel collectors. We have studied three fragments thought to be rich in C and N by using several techniques: FTIR to characterize organic matter; synchrotron-induced x-ray fluorescence (SXRF) to determine Fe and certain element/Fe ratios; SEM to image sample morphology and to detect semiquantitatively Mg, Al, Si, Ca, and Fe; and nuclear reaction analysis (NRA) to measure C, N, O, and Si

    Supramolecular complex formed by DNA oligonucleotide and thiacalix[4]arene. NMR-spectroscopy and molecular docking

    No full text
    The combination of NMR-spectroscopy and molecular docking was applied to investigate the complexation of thiacalix[4]arene with DNA. We have studied the structure of supramolecular complex formed by palindromic decamer DNA d(GCGTTAACGC)2 and tetrasubstituted at lower rim of p-tert-butyl thiacalix[4]arene in 1,3-alternate conformation. With the help of NMR it is shown that oligonucleotide in solution exists in two states: double-stranded helix (dominant structure in solution) and single-stranded form (minor structure) rolled up in a "hairpin" with equilibrium between them. Both complementary methods, NMR and molecular docking, revealed the formation of molecular complex by thiacalix[4]arene and palindromic decamer DNA. Different possible conformations of the complexes were analyzed by means of molecular docking. We used the experimental constraints in molecular docking to identify the complexes, which were in agreement with the NMR data. © 2014 Elsevier B.V. All rights reserved

    Supramolecular complex formed by DNA oligonucleotide and thiacalix[4]arene. NMR-spectroscopy and molecular docking

    No full text
    The combination of NMR-spectroscopy and molecular docking was applied to investigate the complexation of thiacalix[4]arene with DNA. We have studied the structure of supramolecular complex formed by palindromic decamer DNA d(GCGTTAACGC)2 and tetrasubstituted at lower rim of p-tert-butyl thiacalix[4]arene in 1,3-alternate conformation. With the help of NMR it is shown that oligonucleotide in solution exists in two states: double-stranded helix (dominant structure in solution) and single-stranded form (minor structure) rolled up in a "hairpin" with equilibrium between them. Both complementary methods, NMR and molecular docking, revealed the formation of molecular complex by thiacalix[4]arene and palindromic decamer DNA. Different possible conformations of the complexes were analyzed by means of molecular docking. We used the experimental constraints in molecular docking to identify the complexes, which were in agreement with the NMR data. © 2014 Elsevier B.V. All rights reserved

    Supramolecular complex formed by DNA oligonucleotide and thiacalix[4]arene. NMR-spectroscopy and molecular docking

    Get PDF
    The combination of NMR-spectroscopy and molecular docking was applied to investigate the complexation of thiacalix[4]arene with DNA. We have studied the structure of supramolecular complex formed by palindromic decamer DNA d(GCGTTAACGC)2 and tetrasubstituted at lower rim of p-tert-butyl thiacalix[4]arene in 1,3-alternate conformation. With the help of NMR it is shown that oligonucleotide in solution exists in two states: double-stranded helix (dominant structure in solution) and single-stranded form (minor structure) rolled up in a "hairpin" with equilibrium between them. Both complementary methods, NMR and molecular docking, revealed the formation of molecular complex by thiacalix[4]arene and palindromic decamer DNA. Different possible conformations of the complexes were analyzed by means of molecular docking. We used the experimental constraints in molecular docking to identify the complexes, which were in agreement with the NMR data. © 2014 Elsevier B.V. All rights reserved

    Elemental compositions of comet 81P/Wild 2 samples collected by Stardust

    No full text
    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed (similar to 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements
    corecore