12 research outputs found

    Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis

    Get PDF
    Background - The negative feedback system is an important physiological regulatory mechanism controlling angiogenesis. Soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1), acts as a potent endogenous soluble inhibitor of VEGF- and placenta growth factor (PlGF)-mediated biological function and can also form dominant-negative complexes with competent full-length VEGF receptors. Methods and results - Systemic overexpression of VEGF-A in mice resulted in significantly elevated circulating sFlt-1. In addition, stimulation of human umbilical vein endothelial cells (HUVEC) with VEGF-A, induced a five-fold increase in sFlt-1 mRNA, a time-dependent significant increase in the release of sFlt-1 into the culture medium and activation of the flt-1 gene promoter. This response was dependent on VEGF receptor-2 (VEGFR-2) and phosphoinositide-3'-kinase signalling. siRNA-mediated knockdown of sFlt-1 in HUVEC stimulated the activation of endothelial nitric oxide synthase, increased basal and VEGF-induced cell migration and enhanced endothelial tube formation on growth factor reduced Matrigel. In contrast, adenoviral overexpression of sFlt-1 suppressed phosphorylation of VEGFR-2 at tyrosine 951 and ERK-1/-2 MAPK and reduced HUVEC proliferation. Preeclampsia is associated with elevated placental and systemic sFlt-1. Phosphorylation of VEGFR-2 tyrosine 951 was greatly reduced in placenta from preeclamptic patients compared to gestationally-matched normal placenta. Conclusion - These results show that endothelial sFlt-1 expression is regulated by VEGF and acts as an autocrine regulator of endothelial cell function

    Molecular regulation of Placental Growth Factor (PlGF) expression in endothelial cells

    Get PDF
    Placental growth factor (PlGF) is a pro-angiogenic and inflammatory mediator that promotes many pathological conditions including, diabetes, atherosclerosis and cancer. In mouse models, the loss of PlGF or inhibition of vascular endothelial growth factor receptor-1 (VEGFR-1) activity suppresses these disorders. Hyperglycaemia plays a fundamental role in the pathogenesis of type-2 diabetes and associated conditions, resulting in a loss of PI3 kinase (PI3K) signalling and dysfunction in endothelial cells. Using pharmacological inhibitors, siRNA, and adenoviral constructs to modulate the PI3K/Akt signalling activity, I found that the induction of PlGF expression in human umbilical vein endothelial cells (HUVEC) by hyperglycaemia is PI3K/Akt-dependent. Using similar approaches, the FOXO1 transcription factor was identified as the downstream target of Akt involved in the regulation of both PlGF and VEGFR-1 expression. FOXO1 was found to interact directly with the VEGFR-1 gene promoter in vitro, and over-expression of constitutively-active FOXO1 promotes PlGF expression in vivo. Although VEGF activates PI3K/Akt, it stimulates robust PlGF release in endothelial cells. Here I show that this effect is both VEGFR-2 and PKC-dependent, but independent of PI3K/Akt. The PI3K/Akt/FOXO1 axis is an important regulator of vascular homeostasis and stress responses and the identification of its involvement in PlGF expression may provide new therapeutic targets for disorders characterised by endothelial dysfunction

    Comparison of Antigenic Regions Identified on IgG1Fc Using Bioinformatics vs Pepscan Analysis

    Get PDF
    Clinical Medicine: Arthritis and Musculoskeletal Disorders is an international, open access, peer reviewed journal.Epitope mapping allowed the location of antigenic determinants on a protein macromolecule to be identified. In particular, pepscan techniques that utilize a series of overlapping peptides, help detect key amino acid residues that are important in antibody recognition and binding. In a previous study, we employed 15-mer peptides spanning the entire length of IgG1Fc to ascertain successfully the target epitopes of isotypic/allotypic monoclonal reagents. As an extension to this work we have used these peptides to evaluate the location of epitope targets of five IgM rheumatoid factor antibodies (RFAbs). Overall, 2 antibodies, RFAb TS2 and TS1, detected a similar epitope within the CH3 domain (360-KNQVSLTCLVKGFYP-374), whilst 1 (RFAb SJ1) recognised an epitope in the CH2 domain (294- EQYNSTYRVVSVLTV-308). In contrast, 2 RFAbs, PRSJ2 and PRTS1 detected four and five epitopes respectively within the Fc region. RFAb PRSJ2 recognised epitopes detected by RFAB TS2 and TS1 but also further epitopes in the CH2 domain (256-TPEVTCVVVDVSHED-270) and CH3 domain (418-QQGNVFSCSVMHEAL-432). Similarly, RFAb PRTS1 detected all four epitopes plus a fifth in the CH3 domain (382-ESNGQPENNYKTTPP-396). In essence there was a consensus of target epitopes identified by these rheumatoid factor antibodies. Interestingly, two epitopes (256–270, CH2 domain and 360–374, CH3 domain) were novel in that they had not been identified in previous pepscan studies. The other epitopes recognised, either overlapped or were immediately adjacent to previous epitopes detected by poly/monoclonal rheumatoid factor antibodies. Molecular modelling (PCImdad) of IgG1Fc showed that all five epitopes were exposed and surface accessible for antibody interaction. In addition, a bioinformatics analysis of the Fc region using ExPASy was employed to identify key antigenic determinants. This ‘in silico’ approach may provide a means of determining key regions without the need to develop overlapping peptides spanning the entire length of a macromolecule

    Genomic Characterization of Endothelial Enhancers Reveals a Multifunctional Role for NR2F2 in Regulation of Arteriovenous Gene Expression

    No full text
    RATIONALE: Significant progress has revealed transcriptional inputs that underlie regulation of artery and vein endothelial cell fates. However, little is known concerning genome-wide regulation of this process. Therefore, such studies are warranted to address this gap. OBJECTIVE: To identify and characterize artery- and vein-specific endothelial enhancers in the human genome, thereby gaining insights into mechanisms by which blood vessel identity is regulated. METHODS AND RESULTS: Using chromatin immunoprecipitation and deep sequencing for markers of active chromatin in human arterial and venous endothelial cells, we identified several thousand artery- and vein-specific regulatory elements. Computational analysis revealed that NR2F2 (nuclear receptor subfamily 2, group F, member 2) sites were overrepresented in vein-specific enhancers, suggesting a direct role in promoting vein identity. Subsequent integration of chromatin immunoprecipitation and deep sequencing data sets with RNA sequencing revealed that NR2F2 regulated 3 distinct aspects related to arteriovenous identity. First, consistent with previous genetic observations, NR2F2 directly activated enhancer elements flanking cell cycle genes to drive their expression. Second, NR2F2 was essential to directly activate vein-specific enhancers and their associated genes. Our genomic approach further revealed that NR2F2 acts with ERG (ETS-related gene) at many of these sites to drive vein-specific gene expression. Finally, NR2F2 directly repressed only a small number of artery enhancers in venous cells to prevent their activation, including a distal element upstream of the artery-specific transcription factor, HEY2 (hes related family bHLH transcription factor with YRPW motif 2). In arterial endothelial cells, this enhancer was normally bound by ERG, which was also required for arterial HEY2 expression. By contrast, in venous endothelial cells, NR2F2 was bound to this site, together with ERG, and prevented its activation. CONCLUSIONS: By leveraging a genome-wide approach, we revealed mechanistic insights into how NR2F2 functions in multiple roles to maintain venous identity. Importantly, characterization of its role at a crucial artery enhancer upstream of HEY2 established a novel mechanism by which artery-specific expression can be achieved

    Carbon monoxide inhibits sprouting angiogenesis and vascular endothelial growth factor receptor-2 phosphorylation

    No full text
    Carbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor- reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.Fil: Ahmad, Shakil. Aston University; Reino UnidoFil: Hewett, Peter W.. University Of Birmingham; Reino UnidoFil: Fujisawa, Takeshi. University Of Birmingham; Reino UnidoFil: Sissaoui, Samir. University Of Birmingham; Reino UnidoFil: Cai, Meng. Aston University; Reino UnidoFil: Gueron, Geraldine. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Al Ani, Bahjat. University Of Birmingham; Reino UnidoFil: Cudmore, Melissa. University Of Birmingham; Reino UnidoFil: Faraz Ahmed, S.. University of Liverpool; Reino UnidoFil: Wong, Michael K. K.. University Of Southern California; Estados UnidosFil: Wegiel, Barbara. Harvard Medical School; Estados UnidosFil: Otterbein, Leo E.. Aston University; Reino Unido. Harvard Medical School; Estados UnidosFil: VĂ­tek, Libor. Charles University; RepĂșblica ChecaFil: Ramma, Wenda. Harvard Medical School; Estados UnidosFil: Wang, Keqing. Aston University; Reino UnidoFil: Ahmed, Asif. Aston University; Reino Unid
    corecore