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Activation of Proteinase-Activated Receptor 2 Stimulates
Soluble Vascular Endothelial Growth Factor Receptor 1

Release via Epidermal Growth Factor Receptor
Transactivation in Endothelial Cells

Bahjat Al-Ani, Peter W. Hewett, Melissa J. Cudmore, Takeshi Fujisawa, Mahmoud Saifeddine,
Hannah Williams, Wenda Ramma, Samir Sissaoui, Padma-Sheela Jayaraman, Motoi Ohba,

Shakil Ahmad, Morley D. Hollenberg, Asif Ahmed

Abstract—The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women
with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of
elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal
circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine
proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides
(SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from
human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used
to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-�1 and protein kinase C-�, which
required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase
activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated
sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also
suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased
sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2
pathway as a potential therapeutic target for the treatment of preeclampsia. (Hypertension. 2010;55:689-697.)

Key Words: PAR-2 � sVEGFR-1/sFlt-1 � endothelium � factor Xa � HO-1 � preeclampsia

Preeclampsia is a pregnancy specific multiorgan syndrome
characterized by widespread maternal endothelial dam-

age with a clinical presentation of hypertension and protein-
uria after 20 weeks’ gestation.1 Women with preeclampsia are
at an increased risk of developing cardiovascular disease.2

The antiangiogenic factors, soluble vascular endothelial growth
factor receptor 1 (VEGFR; sVEGFR-1, also known as sFlt-1)
and soluble endoglin, are increased dramatically before the
clinical onset of preeclampsia.3 Elevated sVEGFR-1 antago-
nizes the action of vascular endothelial growth factor and
placenta growth factor resulting in impaired human placental
angiogenesis4 and glomerular endothelial cell damage, protein-
uria, and hypertension in rodent models,5 indicating that it is a
major contributory factor to the development of preeclampsia.
Furthermore, the anti-inflammatory enzyme heme oxygenase 1
(HO-1), which is decreased in preeclamptic placentas6 and

regulates inflammatory angiogenesis,7 suppresses sVEGFR-1
release from endothelial cells.8

During placentation, the trophoblasts invade the maternal
tissues but avoid immune rejection.9 Preeclampsia is associ-
ated with a failure to switch from the T helper 1 cytokine
profile (eg, interferon-�, tumor necrosis factor [TNF]-�,
interleukin [IL]-8, and IL-18) to T helper 2 cytokine profile
(eg, IL-4 and IL-10), indicating a lack of immune tolerance.10

A rise in circulating levels of proinflammatory cytokines (eg,
TNF-� and IL-1�) upregulates tissue factor expression lead-
ing to activation of the coagulation system, which can result
in disseminated intravascular coagulation, particularly in
early onset severe preeclampsia11 and eclampsia.12

The main physiological activators of the proteinase-activated
receptors (PAR-1 and PAR-2) are serine proteinases, such as
thrombin and factors VIIa and Xa (FXa).13 PAR-2 plays an
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important role in inflammation and regulates vascular func-
tion.14,15 Proinflammatory cytokines, including interferon-� and
TNF-�, induce PAR-2 expression and, in turn, PAR-2 activation
promotes the production of interferon-�, TNF-�, IL-8, and IL-18
in various cell types, including the endothelium.16 Indeed, T-cell
proliferation, interferon-�, and IL-18 levels are significantly
reduced in PAR-2 knockout mice,16,17 whereas endotoxin-
stimulated macrophages show significantly greater IL-10 ex-
pression18 and enhanced IL-4 secretion19 in PAR-2 null mice.
PAR-2 expression is reported to be increased in human umbil-
ical vein endothelial cells (HUVECs) derived from preeclamptic
pregnancies, and the conditioned medium from preeclamptic
placental villous tissue explants upregulates PAR-2 in cultured
endothelial cells.20 Although PAR-2 activity is known to be
upregulated in the vasculature in inflammatory conditions,21 the
potential relationship between PAR-2 activation and sVEGFR-1
release is unknown. Therefore, we speculated that the activation
of PAR-2 could increase endothelial sVEGFR-1 release. In this
study, we report the ability of PAR-2 agonists to increase
sVEGFR-1 release from endothelial cells via protein kinase C
(PKC)–mediated intracellular transactivation of epidermal
growth factor (EGF) receptor (EGFR) 1 and subsequent down-
stream mitogen-activated protein (MAP) kinase signaling. Fur-
thermore, we show that PAR-2–stimulated sVEGFR-1 release
was suppressed by HO-1 overexpression and enhanced by HO-1
knockdown, indicating that HO-1 is a central regulator of
sVEGFR-1 expression.

Materials and Methods
A full description of materials and methods used can be found in the
online Data Supplement (please see http://hyper.ahajournals.org).

Cell Culture
HUVECs were isolated and cultured as described.8 Human embry-
onic kidney cells (HEK-293) were maintained in DMEM containing
10% FCS, whereas porcine aortic endothelial cells (PAECs) express-
ing PAR-2 (PAEC-PAR-2) and cells containing the vector alone
(PAEC-pCDNA3.1B) were propagated in G418-containing F12-
HAM nutrient mix supplemented with 10% FCS.

Adenoviruses
The recombinant, replication-deficient adenoviruses encoding rat
HO-18 and dominant-negative PKC (dnPKC) isozymes22 were am-
plified and titered and the optimal multiplicity of infection deter-
mined by Western blotting as 50 infectious units (ifu) per cell for
HO-1 and 100 ifu per cell for the dnPKC isozyme adenoviruses.
HUVECs were infected overnight with adenoviruses and then
incubated for 24 hours in basal medium containing 5% FCS.

Small Interfering RNA-Mediated
Gene Knockdown
The small interfering RNAs (siRNAs) targeted against c-Src,23

HO-1,8 and PKC�1 (sense: 5�-GGGAGAAACUUGAACGCAAtt-3�;
antisense: 5�-UUGCGUUCAAGUUUCUCCCtt-3�) and a universal
control siRNA (Dharmacon) were introduced into HUVECs using
the Amaxa Nucleofector HUVEC II kit (Amaxa) and incubated
overnight before treatment.

ELISAs
The sVEGFR-1 concentration in cell supernatants was determined as
described.4 EGFR was measured using the EGFR DuoSet IC ELISA
(R&D Systems) and phosphorylated EGFR by a sandwich ELISA
using an anti-EGFR capture antibody and phosphotyrosine
detection antibody.

Western Blotting
After stimulation, cells were lysed in radioimmunoprecipitation
assay buffer and 30 �g of protein were Western blotted using rabbit
antiphospho-extracellular signal–regulated kinase (ERK)1/2, anti–
Src phospho-Y416, or anti–Raf-1-phospho-S338 (Cell Signaling)
antiactivated EGFR (BD Biosciences) antibodies.4

VEGFR-1 Promoter Reporter Assays
A 1.3-Kb fragment of the human VEGFR-1 promoter-luciferase
construct was used to determine the ability of PAR-2 to activate the
VEGFR-1 gene. The reporter plasmid was constructed by cloning a
PCR fragment corresponding with sequences from �1214 to �155
relative to the first exon in the VEGFR-1 gene into the BglII and
HindIII sites of pGL2 (Promega). HEK293 cells, which express
functional PAR-2,24 and porcine aortic endothelial cells were trans-
fected with the VEGFR-1 promoter construct using Exgen 500
(Fermentas). For details see the online Supplemental Methods.

Statistical Analysis
All of the data are expressed as the mean�SEM. Statistical analysis
was performed using the 2-tailed Student t test. P�0.05 was
considered statistically significant.

Results
PAR-2 Activation Stimulates sVEGFR-1 Release
Endothelial cells derived from patients with preeclampsia
exhibit increased PAR-2 expression.20 To determine the
effect of PAR-2 activation on sVEGFR-1 production,
HUVECs were stimulated with the PAR-2 selective activat-
ing peptides (SLIGRL-NH2 and 2f-LIGRLO-NH2) or FXa for
24 hours and sVEGFR-1 quantified in the culture medium by
ELISA. PAR-2 activating peptides induced sVEGFR-1 re-
lease, whereas the corresponding reverse-control peptides
(LRGILS-NH2 and 2f-OLRGIL-NH2) failed to induce
sVEGFR-1 release (Figure 1A). Similarly, FXa (100 nmol/L)
induced sVEGFR-1 release. A 1.3-Kb human VEGFR-1
promoter luciferase reporter was used to assess the ability of
PAR-2 to activate the VEGFR-1 gene in PAECs and HEK293
cells. Activation of PAR-2 significantly increased VEGFR-1
promoter activity, indicating that PAR-2 regulates the pro-
duction of sVEGFR-1 transcription (Figure 1B and Figure
S2A, available in the online Data Supplement). To confirm
that the sVEGFR-1 release was generated through PAR-2
activation, HUVECs were coincubated with 2f-LIGRLO-NH2

and the PAR-2 antagonist, FSLLRY-NH2,25 which abolished
both the sVEGFR-1 release and VEGFR-1 promoter activity
(Figure 1C and 1D). Moreover, specificity of PAR-2-stimulated
VEGFR-1 promoter activity was demonstrated in PAECs engi-
neered to express PAR-2 (Figure S1) but not in PAECs trans-
fected with empty vector (Figure 1E and 1F). Furthermore,
PAR-2 activation induced robust activation of VEGFR-1 pro-
moter and also increased sVEGFR-1 release from trophoblasts
(Figure S2C), and PAR-2 activators did not significantly alter
cellular activity, confirming that the effect on sVEGFR-1 ex-
pression was not because of an increase in endothelial cell
proliferation or survival (Figure S2B).

PAR-2–Induced sVEGFR-1 Release Depends on
PKC and Src Activity
Both PKC26 and Src27 are involved in PAR-2 signaling.
Soluble VEGFR-1 release and VEGFR-1 promoter activity
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were blocked by a PKC inhibitor (Ro-32-0432), indicating its
involvement in PAR-2–mediated sVEGFR-1 production
(Figure 2A and 2B). HUVECs express PKC�, PKC�1, PKC�,
and PKC� isozymes.28 To evaluate the PKC subtype involved
in PAR-2–mediated sVEGFR-1 release, HUVECs were in-
fected with adenoviruses encoding dominant-negative
isozymes of PKC. PAR-2–induced release of sVEGFR-1 was
inhibited by both PKC� and PKC�, and the basal level of
sVEGFR-1 was suppressed by the overexpression of PKC�
in endothelial cells (Figure 2C). PKC�1 knockdown in
HUVECs abrogated PAR-2–mediated sVEGFR-1 release
(Figure 2D). Western blot analysis confirmed endogenous
expression of PKC isozymes and the modulation by adeno-
virus overexpression or knockdown (Figure 2C). Similarly,
Src family kinase inhibitor PP2 inhibited sVEGFR-1 release
and VEGFR-1 promoter activity, implicating its involvement
in PAR-2–stimulated sVEGFR-1 expression (Figure 3A and
3B). These results were confirmed using siRNA-mediated
knockdown of Src (Figure 3C and 3D).

MAP Kinase Activation and EGFR Transactivation
Are Required for PAR-2–Induced
sVEGFR-1 Expression
The activation of G protein–coupled receptors including PAR-1,
PAR-2, and angiotensin II receptors, is widely reported to

phosphorylate MAP kinase via PKC-mediated transactivation of
EGFR.29–31 To investigate whether MAP kinase activation is
required for PAR-2–induced sVEGFR-1 release, HUVECs were
preincubated with MAP kinase kinase (MEK)1/2 inhibitor
(U0126) and stimulated with PAR-2 ligand. Inhibition of MEK-
1/2, which is immediately upstream of ERK-1/2 in the MAP
kinase pathway, resulted in a complete loss of PAR-2–mediated
sVEGFR-1 release (Figure 4A) and VEGFR-1 promoter activity
in HEK-293 (Figure 4B) and caused a loss of PAR-2–mediated
ERK-1/2 phosphorylation (Figure 4C). Furthermore, the over-
expression of dominant-negative PKC� and PKC� or Src-kinase
inhibition suppressed PAR-2–mediated ERK-1/2 phosphoryla-
tion (Figure 4D and 4E).

To determine the sequence of events leading to PAR-2–
mediated sVEGFR-1 release, we examined the phosphorylation
of Src at Y416 and Raf-1 at S338 in relation to downstream
activation of ERK-1/2 and whether PKC activation is upstream
of Src and Raf-1 in PAR-2–stimulated VEGFR-1 release.
Overexpression of dominant-negative PKC� or PKC� attenu-
ated PAR-2–stimulated Src phosphorylation and completely
inhibited the phosphorylation of Raf-1 (Figure 4F). In addition,
the PKC (GF109203X) and Src (PP2) inhibitors completely
abrogated 2f-LIGRLO-NH2–stimulated phosphorylation of
Raf-1 (Figure 4G). Collectively, these data demonstrate that
PAR-2 stimulates sVEGFR-1 expression and release by activat-
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Figure 1. Selective PAR-2 activation stimulates sVEGFR-1 release in endothelial cells. A, Confluent HUVECs and (B) HEK-293 cells
transfected with a �1.3-kb fragment of the VEGFR-1 promoter with a luciferase reporter were incubated with PAR-2 activating peptide
(100 �mol/L of SLIGRL-NH2 or 50 �mol/L of 2f-LIGRLO-NH2) or FXa (100 nmol/L) for 24 hours, and the cell supernatants assayed for
sVEGFR-1 by ELISA and VEGFR-1 promoter activity in cell lysates were determined by luciferase assay. The corresponding reverse
peptides (LRGILS-NH2 or 2f-OLRGIL-NH2) were used as negative controls. C, HUVECs and (D) HEK-293 cells transfected with
VEGFR-1 promoter were incubated for 24 hours with 2f-LIGRLO-NH2 (10 �mol/L) in the presence or absence of a PAR-2 antagonist
(400 �mol/L of FSLLRY-NH2), and sVEGFR-1 levels in cell supernatants (C) or promoter activity (D) were determined. E, Porcine aortic
endothelial cells expressing PAR-2 (PAEC-PAR-2) or (F) control cells (PAEC-pcDNA3.1B) were transfected with the VEGFR-1 promoter
and stimulated for 24 hours with PAR-2 activating peptide (10 �mol/L of 2f-LIGRLO-NH2) or control peptide (10 �mol/L of 2f-OLRGIL-
NH2), and luciferase activity in the cell lysates was determined. Results are the mean (�SEM) of 3 experiments. *P�0.01 (A and C),
P�0.05 (B), and *P�0.001 (D and E) vs control.

Al-Ani et al HO-1 Suppresses PAR-2–Induced sVEGFR-1 691

 at UNIVERSITY EDINBURGH on June 5, 2013http://hyper.ahajournals.org/Downloaded from 

http://hyper.ahajournals.org/


ing PKC, leading to sequential Src, Ras, Raf-1, and ERK-1/2
activation.

Subsequently, we investigated whether EGFR transactiva-
tion is required for PAR-2–induced ERK1/2 activation and
sVEGFR-1 expression. However, early studies reported the
absence of EGFR in endothelial cells,32 and EGFR-1 has only
recently been detected in HUVECs.33 ELISA and Western
blot analysis confirmed the presence of functional EGFR in
HUVEC lysates (Figure S3). To investigate whether PAR-2
activation can lead to EGFR transactivation, HUVECs were
stimulated with PAR-2 peptide or EGF, and EGFR phosphory-
lation was determined by ELISA. PAR-2 activation increased
EGFR phosphorylation in HUVECs, which was inhibited by the
EGFR kinase inhibitor AG1478 (3 �mol/L; Figure 5A).34 In
addition, 2f-LIGRLO-NH2, FXa, and EGF induced similar
levels of Raf-1S338 phosphorylation in endothelial cells (Figure
S3C). EGFR inhibition abrogated sVEGFR-1 release and down-
stream ERK-1/2 phosphorylation in response to the PAR-2
agonists demonstrating the requirement of EGF transactivation
for PAR-2–mediated sVEGFR-1 release (Figure 5B). Further-

more, the inhibition EGFR resulted in the loss of ERK-1/2
activity after the acute stimulation of HUVECs with either
2f-LIGRLO or FXa (Figure 5C). As anticipated, the inhibition of
ERK-1/2 prevented sVEGFR-1 production in response to FXa
and EGF (Figure S3D).

Src activity has been reported to act both upstream and
downstream of EGFR transactivation after PAR-2 stimulation in
different cell types.27,35 PAR-2–induced EGFR phosphorylation
was inhibited by the Src inhibitor PP2, indicating that Src
activity is required for EGFR transactivation (Figure 5D). In
addition, the PAR-2–mediated activation of Src was not inhib-
ited by AG1478, supporting these findings (Figure 5E). Trans-
activation of the EGFR by PAR-2 can occur through the release
of EGFR agonists, such as transforming growth factor-� or
heparin-binding EGF from the cell surface through the activation
of matrix metalloproteinases (MMPs).30 To determine whether
the transactivation of the EGFR by PAR-2 observed in our
studies occurred via a similar extracellular route, HUVECs were
preincubated with the MMP inhibitor, GM6001, or the reverse-
control peptide (rGM6001; 10 �mol/L), before stimulation with
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Figure 2. PAR-2–induced sVEGFR-1 release from endothelial cells depends on PKC activity. A, HUVECs and (B) HEK293 cells trans-
fected with a VEGFR-1 promoter luciferase reporter construct were pretreated with the PKC inhibitor (Ro-32-0432; 1 �mol/L) for 45
minutes and then stimulated with PAR-2 activating peptide (10 �mol/L of 2f-LIGRLO-NH2) for 24 hours, and the cell culture superna-
tants were assayed for sVEGFR-1 by ELISA (A) and cell lysates assayed for luciferase activity (B), respectively. C, HUVECs were
infected overnight with 100 ifu per cell of adenoviruses expressing dominant-negative PKC� (dnPKC�), PKC� (dnPKC�), PKC�
(dnPKC�), or empty vector (EV), incubated for 24 hours, and the expression of PKC isoforms were examined in cell lysates by Western
blotting. These cells were stimulated with PAR-2–activating peptide (10 �mol/L of 2f-LIGRLO-NH2) for 24 hours, and the conditioned
medium was assayed for sVEGFR-1 by ELISA. D, PKC-�1 siRNA was introduced into HUVECs using an Amaxa nucleofector and the
knockdown of PKC�1 confirmed by Western blotting. PAR-2–mediated sVEGFR-1 release was inhibited in cells treated with PKC-�1
siRNA. Results represent the mean (�SEM). *P�0.01 (A and B vs control and C vs EV�2f-LIGRLO); *P�0.05 (D vs control).
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2f-LIGRLO-NH2 (10 �mol/L) or FXa (200 nmol/L; Figure 5F).
The MMP inhibitor did not significantly suppress sVEGFR-1
release, indicating that MMPs are not involved in PAR-2–
stimulated sVEGFR-1 release. On the basis of these results, we
conclude that the PAR-2–mediated transactivation of EGFR
occurs through an intracellular route via a PKC- and Src-
dependent pathway.

Statins and HO-1 Activity Downregulate
PAR-2s-Induced sVEGFR-1 Release
Statins (which upregulate HO-1), HO-1, and its gaseous
product CO act as negative regulators of sVEGFR-1

release in endothelial cells.8 Consistent with this concept,
simvastatin inhibited PAR-2–mediated sVEGFR-1 release
(Figure 6A) and VEGFR-1 promoter activity (Figure 6B
and 6C). The overexpression of HO-1 also significantly
inhibited the release of sVEGFR-1 (Figure 6D), whereas
loss of HO-1 enhanced VEGFR-1 promoter activity (Fig-
ure 6E). The lipid soluble CO-releasing molecule
(CORM-2) reduced PAR-2–induced sVEGFR-1 release,
whereas the inactive CORM-2 had no significant effect
(Figure 6F). These results further support a potentially
beneficial role for HO-1 and its product CO in preeclamp-
sia, as reported previously.8
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Figure 3. PAR-2–induced sVEGFR-1 produc-
tion requires Src activation. A, HUVECs and
(B) HEK-293 cells transfected with a
VEGFR-1 promoter luciferase reporter con-
struct were pretreated with an Src inhibitor
(PP2; 10 �mol/L) for 45 minutes and then
stimulated with PAR-2–activating peptide
(10 �mol/L of 2f-LIGRLO-NH2) for 24 hours.
The cell culture supernatants were assayed
for sVEGFR-1 by ELISA (A) and cell lysates
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Figure 4. ERK-1/2 activation is required for PAR-2–induced sVEGFR-1 release. A, HUVECs and (B) HEK293 cells transfected with a
VEGFR-1 promoter luciferase reporter construct were pretreated with an MEK-1/2 inhibitor (U0126; 10 �mol/L) for 45 minutes, stimu-
lated with PAR-2–activating peptide (2f-LIGRLO-NH2; 10 �mol/L) for 24 hours, and the conditioned medium was assayed for sVEGFR-1
by ELISA (A) and luciferase activity determined in cell lysates (B), respectively. C through G, Western blot analysis: cell lysates were
immunoblotted for phosphor–ERK-1/2 (p-ERK), phosphor-Src (pY416Src), and phospho–Raf-1 (pS338Raf-1); HUVECs were either pre-
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Discussion
This study shows that receptor-selective PAR-2 activation
induces VEGFR-1 promoter activity and sVEGFR-1 release
from endothelial cells through the sequential activation of
PKC, Src, Raf-1, and ERK-1/2 and depends on EGFR
transactivation (Figure 7). Furthermore, it demonstrates that
upregulation of HO-1 with Simvastatin or overexpression of
HO-1 or CO suppresses PAR-2–mediated sVEGFR-1 release
and supports our earlier study showing that the HO-1/CO
pathway inhibits cytokine-induced sVEGFR-1 release.8

The transactivation of the EGFR by G-coupled protein
receptors, including PAR-1, PAR-2, and PAR-4, is well
established.29,30,36 Inhibition of Src or EGFR completely
abrogated PAR-2–mediated sVEGFR-1 expression, indicat-
ing that both Src and EGFR activation is required in concert
with PKC for the efficient release of sVEGFR-1 in response
to PAR-2. In this study, Src activity was required for
PAR-2–mediated EGFR transactivation. This is consistent
with a recent report showing that EGFR transactivation and
MAP kinase activity in PAR-2–induced chloride secretion in
intestinal epithelial cells depended on Src activation35 and a
similar mechanism in cardiomyocytes after PAR-4 stimula-
tion.36 The inhibition of either the Src or EGFR did not
completely block PAR-2–stimulated ERK-1/2 phosphoryla-

tion, suggesting that ERK-1/2 may also be activated directly
by PKC via Raf-1. However, activation of ERK-1/2 appears
to be the final pathway for PAR-2–mediated release of
sVEGFR-1. In many cell systems, EGFR transactivation is
mediated by the proteolytic cleavage of cell membrane–
bound EGFR ligands, including transforming growth factor-�
and heparin-binding EGF by MMP such as the TNF-�–
converting enzyme.29,30 PAR transactivation of EGFR was
reported to occur in an MMP-independent manner, requiring
Src activation in cardiac fibroblasts36 and intestinal epithelial
cells.35 In this study, MMP inhibition did not prevent PAR-
2–mediated sVEGFR-1 release supporting EGFR transacti-
vation occurring via an intracellular route. The observation
that EGFR transactivation leads to increased sVEGFR-1
release may have broader significance in preeclampsia. The
infusion of angiotensin II selectively upregulates the pro-
duction of sVEGFR-1 in pregnant mice.37 Angiotensin II
type 1 receptor density increases in preeclamptic placen-
tas,38 and angiotensin II type 1 activating autoantibodies
induce a preeclampsia-like condition in mice.39 Given the
ability of angiotensin II to transactivate the EGFR31 and
the signal transduction pathway identified for PAR-2 in
this study, we suggest that this represents a common
mechanism by which G protein– coupled receptors could
induce sVEGFR-1 production.
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ng/mL), and sVEGFR-1 was assayed in the cell culture supernatants by ELISA. C, After pretreatment with the EGFR inhibitor (AG1478),
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PAR-2 inhibition can suppress TNF-� expression in in-
flammatory settings40 and improve wound healing in mice by
reducing inflammation.41 Given the increased procoagulant
activity observed in preeclampsia and the ability of the
coagulation proteases factors VIIa and FXa to activate
PAR-2, coupled with the reported increased PAR-2 expres-
sion on endothelium derived from preeclamptic women,20 we
suggest that PAR-2 activation may be a contributing factor to
the increases in circulating sVEGFR-1 in this syndrome.
Furthermore, the reported increased expression of PAR-1 in
the endothelium20 and placenta42 of preeclamptic women,
combined with the observed excessive generation thrombin,
the ligand for PAR-1, in preeclampsia, indicates that other
PAR receptors may also be involved in sVEGFR-1 produc-
tion in this setting. Although the trophoblast is the main
source of sVEGFR-1, and PAR-2 activation increases
sVEGFR-1 release from trophoblasts, this study confirms that
the endothelium may be a significant source of sVEGFR-1.
PAR-2 activation leading to sVEGFR-1 release from the
endothelium is relevant not only in the placental-based
perturbation in preeclampsia, but inflammatory conditions,
such as cardiovascular diseases and sepsis, may contribute
directly to the endothelial dysfunction.

A recent report showed that, in mice lacking PAR-2,
exposure to antiphospholipid antibodies did not induce fetal
injury or miscarriage. Furthermore, statin treatment reduced
the adverse effects of PAR-2 activation induced by antiphos-
pholipid antibodies and prevented pregnancy loss.43 HO-1
activity is essential for the successful outcome of pregnancy,44

and HO protein expression is reduced in preeclamptic placen-
tas.6 The concentration of CO in the exhaled breath of women
with preeclampsia is significantly less than in normal preg-
nancy,45 indicating lower HO activity in these patients. HO-1
and CO inhibit VEGF-stimulated sVEGFR-1.8 In this study,
we demonstrate that upregulation of HO-1 with Simvastatin
or activation of the HO-1 pathway suppresses PAR-2–
mediated sVEGFR-1 release. More importantly, these studies
highlight the potential efficacy of statins in controlling
complications of pregnancy, which are being investigated in
a randomized, placebo-controlled trial (Statins to Ameliorate
early onset Pre-eclampsia [StAmP]) for use of statins to
ameliorate early onset preeclampsia.

Perspectives
The antiangiogenic soluble factor sVEGFR-1 (commonly
know as sFlt-1) appears to be “the final common pathway”
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inducing the maternal clinical signs of preeclampsia. This
study demonstrates that activation of the proinflammatory
receptor PAR-2 caused the endothelium to release
sVEGFR-1, and the lipid-lowering statin, simvastatin was
found to completely block sVEGFR-1 expression. Recently,
Redecha et al43 showed that PAR-2 activation caused tropho-
blast injury and fetal death, which was also blocked by
simvastatin. Collectively, the findings indicate that PAR-2
activation leading to increased sVEGFR-1 release may con-
tribute to vascular dysfunction in pregnancy and identifies the
PAR-2 pathway as a potential therapeutic target.
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Methods 

 
Reagents 
All peptides were synthesized at the peptide synthesis facility, University of Calgary, 
Faculty of Medicine, Calgary, Alberta, Canada.  Factor Xa was obtained from Cambridge 
BioScience (Cambridge, UK).  EGF was purchased from RELIATech (Brauschweig, 
Germany).  Rabbit antibodies against phospho-ERK1/2, phospho-c-Raf and phospho-Src 
were purchased from Cell Signaling (Beverly, MA), and rabbit anti-HO-1 from StressGen 
Biotechnologies Corporation, Canada.  Ro-32-0432, GF109203X, PP2 and U0126 were 
purchased from the Calbiochem (Nottingham, UK).  Eurogentec (Southampton, UK) 
synthesized the siRNAs. Tricarbonyldichlororuthenium (II) dimer (CORM-2), ruthenium (III) 
chloride hydrate (CORM-2 control), Simvastatin, tumor necrosis factor-α (TNFα), mouse 
anti-β-actin monoclonal antibody and all other cell culture reagents and chemicals were 
obtained from Sigma Aldrich (Poole, UK). 
 

Cell Culture 
HUVEC were isolated and cultured as described previously.1 Experiments were performed 
on second or third passage HUVEC.  HEK 293 human embryonic kidney cells were 
maintained in DMEM containing 10% FCS.  The porcine aortic endothelial cell line 
expressing PAR-2 (PAEC-PAR-2) and cells containing the vector alone (PAEC-
pCDNA3.1B) were routinely propagated in G418 containing F12-HAM nutrient mix 
supplemented with 10% (v/v) FCS. Human first trimester placental tissues derived cell-line 
(HTR-8) was a kind gift from Professor Charles H. Graham. 
 
Adenoviruses  
The recombinant, replication-deficient adenoviruses encoding rat HO-1 (a kind gift from 
Professor Augustine Choi, Pennsylvania, USA) and dominant-negative PKC  (dnPKC) 
isozymes were prepared as described previously.2  All adenoviruses were amplified, titred 
and the optimal multiplicity of infection determined by Western blotting was found to be 50 
ifu/cell for HO-1 and 100 ifu/cell for the dnPKC isozyme adenoviruses.  HUVEC were 
infected overnight at 100 ifu/cell with adenoviruses expressing dnPKCα, dnPKCβ1, 
dnPKCε, and empty-vector (AdCMV) as a control then incubated for 24 hours in basal 
medium containing 5% FCS.   
 
SiRNA-mediated gene knock-down 
The siRNAs targeted against c-Src3, HO-14 and PKCβ1 (sense 5′-
GGGAGAAACUUGAACGCAAtt-3′; antisense 5′-UUGCGUUCAAGUUUCUCCCtt-3′) and a 
universal control siRNA (Dharmacon) were introduced into HUVEC using the Amaxa 
Nucleofector HUVEC II kit according to the manufacturer’s instructions (Amaxa, Germany).  
Following Nucleofection the cells were incubated overnight prior to treatment.   
 
 
Western Blotting 
Following stimulation, cells were lysed in RIPA buffer and 30 µg protein Western blotted as 
described previously5 using rabbit anti-phospho-ERK1/2, anti-Src phospho-Y416 or anti-
Raf-1-phospho-S338 (Cell Signaling) anti-activated EGFR (BD Biosciences) antibodies at 
the manufacturer’s recommended concentrations.   
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Generation of porcine aortic endothelial cells (PAEC) expressing PAR-2 
A permanent endothelial cell line expressing PAR-2 was generated as described 
previously.6 Briefly, a rat PAR-2 cDNA in pcDNA3.1B was transfected into a PAEC which 
lack functional PAR-1 and PAR-2 expression (see Figure S1B), using ExGen 500 
(Fermentas, UK).  Cells were then subcloned and selected in geneticin-containing medium 
and PAR-2 receptor-bearing cells (PAEC-PAR-2) were isolated using the anti-PAR-2 B5 
antibody and fluorescence-activated cell sorting to yield a permanent cell line.  PAEC-
PAR-2 were routinely propagated in geneticin-containing HAM F12 nutrient mix 
supplemented with 10% (v/v) FCS.  PAEC stably transfected with the pCDNA3.1B vector 
alone were used as a control.   
 
Calcium signalling assay 
PAEC-PAR-2 and PAEC-pCDNA31.B cells were loaded with the intracellular calcium 
indicator Fluo-3 (Molecular Probes inc., Eugene, USA) at a final concentration of 22 
µmol/L, as described previously 6. Fluorescence measurements, reflecting elevations of 
intracellular calcium, were conducted at 24oC using an AMINCO-Bowman series 2 
luminescence spectrometer (Spectronic Unicam, Rochester, USA), with excitation at 480 
nM and emission at 530 nM.  The fluorescence signals caused by the addition of test 
agonists were expressed as described previously 6 relative to the fluorescence peak height 
yielded by replicate cell suspensions treated with 2 µmol/L concentrations of the ionophore 
A23187 (Sigma Chemical). This concentration of A23187 was at the plateau of its 
concentration-response curve for fluorescence responses.   
 
MTT Assay 
HUVEC were seeded at a density of 1x 104 cells/well in a 96-well plate and incubated 
overnight at 37ºC in growth medium. Cells were incubated in triplicate with PAR-2 
activators in medium containing 5% FCS for 24 hours.  The medium was removed, 80 µl of 
0.2% BSA-M199 medium and 20 µl of 5 mg/ml MTT (3-(4,5-Dimethylthiazol–2-yl)-2,5-
diphenyltetrazolium bromide thizolyl blue were added to each well and the plate incubated 
in the dark at 37ºC for 4 hours.  The MTT solution was removed and DMSO (150 µl/well) 
added and the plate agitated for 5 minutes.  The optical density was measured at 540 nm 
and 690 nm and DMSO alone was used as a blank.  
 

Enzyme-Linked Immunosorbent Assays 
The sVEGFR-1 concentration in cell supernatants was determined as described 
previously.5  EGFR was measured in cell lyates using the EGFR DuoSet IC ELISA 
according to the manufacturer’s instructions (R&D Systems, UK).  Phosphorylated EGFR 
was detected using a sandwich ELISA employing an anti-EGFR capture antibody and 
phosphotyrosine detection antibody. Following stimulation cell monolayers growing on 6-
well dishes were placed on ice and lysed in RIPA buffer (UpState) containing protease and 
phosphatase inhibitors (Sigma, Poole, Dorset UK).  The protein concentration of cell 
lysates was determined using the DC Protein Assay (BioRad).  Levels of total and 
phosphorylated EGFR were measured in cell lysates using commercial (DuoSet® IC; R&D 
Systems) and in-house ELISAs respectively.  Briefly, phospho-EGFR was detected on 
Immunosorb (Nunc, USA) 96-well plates coated with 0.8 µg/ml monoclonal anti-EGFR 
capture antibody (R&D Systems) in PBS overnight and blocked with 1% BSA in PBS.  Cell 
lysates (100 µg/well), were added to the plate and incubated for 2 hours.  The presence of 
phospho-EGFR was then detected by adding 100 µl/well biotin conjugated anti-phospho-
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tyrosine MoAb (PY99; 1 µg/ml) for 2 hours and binding visualised using the diluted 
streptavidin-HRP.  Total EGFR was measured in the same cell lyates using the EGFR 
DuoSet ELISA according to the manufacturer’s instructions (R&D Systems, UK).  Results 
were normalised for protein concentration and expressed as ratio of the level of 
phosphorylated to total EGFR. 
 
VEGFR-1 promoter reporter assays 
A ~1.3 Kb fragment of the human VEGFR-1 promoter starting from -1500 bp relative to the 
start codon was cloned into the pGL2 luciferase reporter plasmid (pVEGFR-1luc) was 
used to determine the ability of PAR-2 to activate the VEGFR-1 gene in PAEC and 
HEK293 cells which express high levels of PAR-27 and EGFR (Figure S3).  Luciferase 
reporter constructs were introduced into HEK293 cells using the Amaxa Nucleofector kit V 
and manufacturer’s recommended conditions, and into PAEC using ExGen 500 
(EuroMedex, France) as described previously.8  Following stimulation for 24 hours, 
luciferase activity was determined in cell lysates using the Dual Luciferase Assay 
(Promega) as described previously.8   
 
 
Results 
 
Generation PAEC line expressing functional PAR-2 receptors   
PAEC which do not express PAR-2 were transfected with a plasmid containing rat PAR-2 
and positive clones selected in G418 containing medium to establish a stable PAR-2 
expressing cell line (PAEC-PAR-2).  The presence of PAR-2 receptors in these cells was 
demonstrated by immunostaining with an anti-PAR-2 antibody (Figure S1A).  Functional 
activity of PAR-2 in this cell line was confirmed by monitoring calcium mobilisation in Fluo-
3 loaded cells following activation with the PAR-2-selective peptide SLIGRL-NH2 (Figure 
S1B). In addition, PAR-2 desensitisation was achieved after a second challenge with 
SLIGRL-NH2 at 10 minutes.  No PAR-2 staining, or calcium mobilisation in response to 
SLIGRL-NH2, was observed in the empty vector containing PAEC-pCDNA3.1B control cell 
line (Figure S1).  
 
PAR-2 activating peptides induce robust VEGFR-1 promoter activation without 
affecting cell viability 
The PAR-2 peptides SLIGRL-NH2 and 2f-LIGRLO induced VEGFR-1 promoter activity in 
HEK-293 cells in a similar manner to Angiotensin II (Figure S2A) which we had reported 
previously to stimulate sVEGFR-1 release in trophoblasts.9  The incubation of primary 
endothelial cells with the PAR-2 activators did not significantly alter their mitochondrial 
activity as assessed by MTT assay (Figure S2B) indicating that the effect of PAR-2 
activation on sVEGFR-1 expression was specific and not due to a more general effect on 
endothelial cell proliferation or survival.   
 
HUVEC express functional EGF receptors and their direct activation results in 
sVEGFR-1 release 
Several earlier studies have reported the absence of EGFR in endothelial cells. 10  More 
recently EGFR-1 has been detected in HUVEC and other types of endothelial cells. 11, 12  
To confirm that HUVEC were expressing EGFR under the culture conditions employed for 
our studies, HUVEC lysates were analysed by both ELISA and Western blotting for the 
presence of EGFR.  HUVEC were found to express approximately 550 pg of EGFR per 
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100 µg of cell lysate by ELISA (Figure S3A).  This was ~ 4-fold less than in HEK-293 cells 
which were used as a positive control.  To demonstrate activation of EGFR in endothelial 
cells HUVEC were incubated with EGF for 10 minutes and cell lysates Western blotted 
using a monoclonal antibody specific for the activated conformation of EGFR.  The level of 
activated EGFR detected in HUVEC was found to be greater following stimulation of the 
cells with increasing concentrations of EGF (Figure S3B).  Moreover, stimulation HUVEC 
with EGF resulted in an increase in Raf-1 S338 phosphorylation and increase in sVEGFR-
1 release which was blocked by the p42/p44 Erk inhibitor, U0126.  Collectively, these 
results demonstrate the presence of functional EGFR in HUVEC and that its direct 
activation can induce sVEGFR-1 production through the p42/p44 MAP Kinase pathway.    
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Figure S1. Generation of a porcine aortic endothelial cell (PAEC) line expressing functional PAR-2.  A,
PAEC were transfected with either a plasmid containing rat PAR-2 cDNA (PAEC-PAR-2) or empty vector
(PAEC-pCDNA) and selected with G418.  Cells growing on microculture slides were stained with anti-human
PAR-2 antibody (clone B5).  B, To demonstrate the presence of functional PAR-2 in PAEC-PAR-2 cells were
loaded with Fluo-3 and stimulated with the PAR-2-selective peptide SLIGRL-NH2 (100 µmol/L) and calcium
mobilisation investigated. No calcium response was observed in PAEC-pCDNA following stimulation with PAR-2
(SLIGRL) or PAR-1 (TFLLR) specific peptides. The ionophore A23187 (2 µmol/L) was used as a positive control.
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Figure S2

Figure S2.  PAR-2 activating peptides induce VEGFR-1
expression without affecting cell viability.  A, HEK-293 cells
transfected with a 1.5 kb fragment of the VEGFR-1 promoter with a
luciferase reporter were incubated with SLIGRL-NH2 (30 mmol/L),
2f-LIGRLO-NH2 (10 mmol/L), or Angiotensin II (100 nmol/L) for 24
hours and VEGFR-1 promoter activity in cell lysates determined by
luciferase assay.  B, HUVEC were incubated with increasing
concentrations of 2f-LIGRLO-NH2, SLIGRL-NH2 and FXa in medium
containing 5% FCS for 24 hours and cell viability assessed by MTT
assay. C, the first trimester trophoblast cell line (HTR-8) were
incubated with SLIGRL-NH2 (100 µmol/L), 2f-LIGRLO-NH2 (50
µmol/L), FXa (100 nmol/L) or TNFα (50 ng/mL) for 24 hours and the
cell supernatants assayed for sVEGFR-1 by ELISA. The
corresponding reverse peptides, LRGILS-NH2 and 2f-OLRGIL-NH2,
and TNFα were used as negative and positive controls respectively.
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Figure S3.  HUVEC express functional EGF receptors and their activation results in sVEGFR-1 release.  A, The
presence of EGFR was detected in both HUVEC and HEK-293 cell lysates (100 µg/well) by ELISA (R&D Systems).  B,
HUVEC were incubated with increasing concentrations of EGF for 10 minutes and cell lysates (50 µg/lane) subjected to
Western blotting with an antibody specific for activated EGFR.  HEK-293 cells were used as a positive control.  C,
HUVEC were serum-starved, stimulated for 10 minutes with 2f-LIGRLO-NH2 (10 µmol/L), FXa (200 nmol/L) or EGF (50
ng/mL) and the cells lysates Western blotted for phospho S338 Raf-1 and β-actin as a loading control.  D, HUVEC were
pre-treated for 45 minutes with U0126 (10 µmol/L) and stimulated with FXa (200 nmol/L) or EGF (50 ng/mL) for 24 hours
and sVEGFR-1 assayed in the cell culture supernatants by ELISA.  *p<0.01 versus control.
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