535 research outputs found

    Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund

    Get PDF
    This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K

    Characterizations of electrical properties of highT(sub c) superconducting materials

    Get PDF
    The automated data acquisition system developed in the Space Science Laboratory at Marshall Space Flight Center for measuring electrical properties of high temperature superconductors is described. The acquisition system, consisting of a computer and computer-controlled hardware, allows large numbers of voltage, current, temperature, and magnetic measurements to be performed on bulk and thin film samples. Typical results are shown characterizing transition temperature (T sub c), critical current density (J sub c), and magnetic properties of bulk high T(sub c) materials as a function of temperature

    Processing of strong flux trapping high T(subc) oxide superconductors: Center director's discretionary fund

    Get PDF
    Magnetic suspension effect was first observed in samples of YBa2Cu3O7/AgO(Y-123/AgO) composites. Magnetization measurements of these samples show a much larger hysteresis which corresponds to a large critical current density. In addition to the Y-123AgO composites, recently similar suspension effects in other RE-123/AgO, where RE stands for rare-Earth elements, were also observed. Some samples exhibit even stronger flux pinning than that of the Y-123/AgO sample. An interesting observation was that in order to form the composite which exhibits strong flux trapping effect the sintering temperature depends on the particular RE-123 compound used. The paper presents the detailed processing conditions for the formation of these RE-123/AgO composites, as well as the magnetization and critical field data

    New constraints on light axion-like particles using Chandra transmission grating spectroscopy of the powerful cluster-hosted quasar H1821+643

    Get PDF
    Axion-like particles (ALPs) are predicted by several Beyond the Standard Model theories, in particular, string theory. In the presence of an external magnetic field perpendicular to the direction of propagation, ALPs can couple to photons. Therefore, if an X-ray source is viewed through a magnetized plasma, such as a luminous quasar in a galaxy cluster, we may expect spectral distortions that are well described by photon–ALP oscillations. We present a 571 ks combined high- and low-energy transmission grating Chandra observation of the powerful radio-quiet quasar H1821+643, hosted by a cool-core cluster at redshift 0.3. The spectrum is well described by a double power-law continuum and broad+narrow iron line emission typical of type-1 active galactic nuclei (AGNs), with remaining spectral features 6.3 × 10−13 GeV−1 for most ALP masses <10−12 eV. Our results are moderately more sensitive to constraining ALPs than the best previous result from Chandra observations of the Perseus cluster, albeit with a less constrained field model. We reflect on the promising future of ALP studies with bright AGNs embedded in rich clusters, especially with the upcoming Athena mission

    Retrieval of water vapor using ground-based observations from a prototype ATOMMS active centimeter- and millimeter-wavelength occultation instrument

    Get PDF
    A fundamental goal of satellite weather and climate observations is profiling the atmosphere with in situ-like precision and resolution with absolute accuracy and unbiased, all-weather, global coverage. While GPS radio occultation (RO) has perhaps come closest in terms of profiling the gas state from orbit, it does not provide sufficient information to simultaneously profile water vapor and temperature. We have been developing the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) RO system that probes the 22 and 183&thinsp;GHz water vapor absorption lines to simultaneously profile temperature and water vapor from the lower troposphere to the mesopause. Using an ATOMMS instrument prototype between two mountaintops, we have demonstrated its ability to penetrate through water vapor, clouds and rain up to optical depths of 17 (7 orders of magnitude reduction in signal power) and still isolate the vapor absorption line spectrum to retrieve water vapor with a random uncertainty of less than 1&thinsp;%. This demonstration represents a key step toward an orbiting ATOMMS system for weather, climate and constraining processes. ATOMMS water vapor retrievals from orbit will not be biased by climatological or first-guess constraints and will be capable of capturing nearly the full range of variability through the atmosphere and around the globe, in both clear and cloudy conditions, and will therefore greatly improve our understanding and analysis of water vapor. This information can be used to improve weather and climate models through constraints on and refinement of processes affecting and affected by water vapor.</p

    Seeing like the international community: how peacebuilding failed (and survived) in Tajikistan

    Get PDF
    Post-print version. 18 month embargo by the publisher. Article will be released April 2010.The international community claims transformative power over post-conflict spaces via the concept of peacebuilding. International actors discursively make space for themselves in settings such as the Central Asian state of Tajikistan which endured a civil war during the 1990s and has only seen an end to widespread political violence in recent years. With the work of James C. Scott, this paper challenges the notion that post-conflict spaces are merely the objects of international intervention. It reveals how, even in cases of apparent stability such as that of Tajikistan, international actors fail to achieve their ostensible goals for that place yet make space for themselves in that place. International peacebuilders may provide essential resources for the re-emergence of local forms of order yet these symbolic and material resources are inevitably re-interpreted and re-appropriated by local actors to serve purposes which may be the opposite of their aims. However, despite this ‘failure’ of peacebuilding it nevertheless survives as a discursive construction through highly subjective processes of monitoring and evaluation. So maintained, peacebuilding is a constitutive element of world order where the necessity of intervention for humanitarian, democratic and statebuilding ends goes unchallenged. This raises the question of what or where – in spatial terms – is the locus of international intervention: the local recipients of peacebuilding programmes (who are the ostensible targets) or ‘the International Community’ itself (whose space is re-inscribed as that of an imperfect but necessary regulator of world order)

    Effectiveness of pneumococcal polysaccharide vaccine for preschool-age children with chronic disease.

    Get PDF
    To estimate the effectiveness of pneumococcal polysaccharide vaccine, we serotyped isolates submitted to the Pneumococcal Sentinel Surveillance System from 1984 to 1996 from 48 vaccinated and 125 unvaccinated children 2 to 5 years of age. Effectiveness against invasive disease caused by serotypes included in the vaccine was 63%. Effectiveness against serotypes in the polysaccharide vaccine but not in a proposed seven-valent protein conjugate vaccine was 94%

    TB database: an integrated platform for tuberculosis research

    Get PDF
    The effective control of tuberculosis (TB) has been thwarted by the need for prolonged, complex and potentially toxic drug regimens, by reliance on an inefficient vaccine and by the absence of biomarkers of clinical status. The promise of the genomics era for TB control is substantial, but has been hindered by the lack of a central repository that collects and integrates genomic and experimental data about this organism in a way that can be readily accessed and analyzed. The Tuberculosis Database (TBDB) is an integrated database providing access to TB genomic data and resources, relevant to the discovery and development of TB drugs, vaccines and biomarkers. The current release of TBDB houses genome sequence data and annotations for 28 different Mycobacterium tuberculosis strains and related bacteria. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives. TBDB currently hosts data for nearly 1500 public tuberculosis microarrays and 260 arrays for Streptomyces. In addition, TBDB provides access to a suite of comparative genomics and microarray analysis software. By bringing together M. tuberculosis genome annotation and gene-expression data with a suite of analysis tools, TBDB (http://www.tbdb.org/) provides a unique discovery platform for TB research
    corecore